Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luca Muzio is active.

Publication


Featured researches published by Luca Muzio.


Nature Neuroscience | 2000

Area identity shifts in the early cerebral cortex of Emx2 −/− mutant mice

Antonello Mallamaci; Luca Muzio; Chun Hung Chan; John G. Parnavelas; Edoardo Boncinelli

The specification of area identities in the cerebral cortex is a complex process, primed by intrinsic cortical cues and refined after the arrival of afferent fibers from the thalamus. Little is known about the genetic control of the early steps of this process, but the distinctive expression pattern of the homeogene Emx2 in the developing cortex has prompted suggestions that it is critical in this context. We tested this hypothesis using Emx2−/− mice. We found that the normal spectrum of cortical areal identities was encoded in these mutants, but areas with caudal–medial identities were reduced and those with anterior–lateral identities were relatively expanded in the cortex.


The Journal of Neuroscience | 2009

Inflammation Triggers Synaptic Alteration and Degeneration in Experimental Autoimmune Encephalomyelitis

Diego Centonze; Luca Muzio; Silvia Rossi; Francesca Cavasinni; Valentina De Chiara; Alessandra Bergami; Alessandra Musella; Marcello D'Amelio; Virve Cavallucci; Alessandro Martorana; Andrea Bergamaschi; Maria Teresa Cencioni; Adamo Diamantini; Erica Butti; Giancarlo Comi; Giorgio Bernardi; Francesco Cecconi; Luca Battistini; Roberto Furlan; Gianvito Martino

Neurodegeneration is the irremediable pathological event occurring during chronic inflammatory diseases of the CNS. Here we show that, in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, inflammation is capable in enhancing glutamate transmission in the striatum and in promoting synaptic degeneration and dendritic spine loss. These alterations occur early in the disease course, are independent of demyelination, and are strongly associated with massive release of tumor necrosis factor-α from activated microglia. CNS invasion by myelin-specific blood-borne immune cells is the triggering event, and the downregulation of the early gene Arc/Arg3.1, leading to the abnormal expression and phosphorylation of AMPA receptors, represents a culminating step in this cascade of neurodegenerative events. Accordingly, EAE-induced synaptopathy subsided during pharmacological blockade of AMPA receptors. Our data establish a link between neuroinflammation and synaptic degeneration and calls for early neuroprotective therapies in chronic inflammatory diseases of the CNS.


Brain | 2008

Persistent inflammation alters the function of the endogenous brain stem cell compartment.

Stefano Pluchino; Luca Muzio; Jaime Imitola; Michela Deleidi; Clara Alfaro-Cervello; Giuliana Salani; Cristina Porcheri; Elena Brambilla; Francesca Cavasinni; Andrea Bergamaschi; Jose Manuel Garcia-Verdugo; Giancarlo Comi; Samia J. Khoury; Gianvito Martino

Endogenous neural stem/precursor cells (NPCs) are considered a functional reservoir for promoting tissue homeostasis and repair after injury, therefore regenerative strategies that mobilize these cells have recently been proposed. Despite evidence of increased neurogenesis upon acute inflammatory insults (e.g. ischaemic stroke), the plasticity of the endogenous brain stem cell compartment in chronic CNS inflammatory disorders remains poorly characterized. Here we show that persistent brain inflammation, induced by immune cells targeting myelin, extensively alters the proliferative and migratory properties of subventricular zone (SVZ)-resident NPCs in vivo leading to significant accumulation of non-migratory neuroblasts within the SVZ germinal niche. In parallel, we demonstrate a quantitative reduction of the putative brain stem cells proliferation in the SVZ during persistent brain inflammation, which is completely reversed after in vitro culture of the isolated NPCs. Together, these data indicate that the inflamed brain microenvironment sustains a non cell-autonomous dysfunction of the endogenous CNS stem cell compartment and challenge the potential efficacy of proposed therapies aimed at mobilizing endogenous precursors in chronic inflammatory brain disorders.


Nature Neuroscience | 2002

Conversion of cerebral cortex into basal ganglia in Emx2-/- Pax6Sey/Sey double-mutant mice

Luca Muzio; Barbara DiBenedetto; Anastassia Stoykova; Edoardo Boncinelli; Peter Gruss; Antonello Mallamaci

The molecular mechanisms that activate morphogenesis of cerebral cortex are currently the subject of intensive experimental analysis. Transcription factor genes of the homeobox, basic helix-loop-helix (bHLH) and zinc-finger families have recently been shown to have essential roles in this process. However, the actual selector genes activating corticogenesis have not yet been identified. Here we show that high-level expression of at least one functional allele of either of the homeobox genes Emx2 or Pax6 in the dorsal telencephalon is necessary and sufficient to stably activate morphogenesis of cerebral cortex and to repress that of adjacent structures, such as striatum.


Annals of Neurology | 2012

Myeloid microvesicles are a marker and therapeutic target for neuroinflammation.

Claudia Verderio; Luca Muzio; Elena Turola; Alessandra Bergami; Luisa Novellino; Francesca Ruffini; Loredana Riganti; Irene Corradini; Maura Francolini; Livia Garzetti; Chiara Maiorino; Federica Servida; Alessandro Vercelli; Mara A. Rocca; Dacia Dalla Libera; Vittorio Martinelli; Giancarlo Comi; Gianvito Martino; Michela Matteoli; Roberto Furlan

Microvesicles (MVs) have been indicated as important mediators of intercellular communication and are emerging as new biomarkers of tissue damage. Our previous data indicate that reactive microglia/macrophages release MVs in vitro. The aim of the study was to evaluate whether MVs are released by microglia/macrophages in vivo and whether their number varies in brain inflammatory conditions, such as multiple sclerosis (MS).


The Journal of Neuroscience | 2005

Foxg1 Confines Cajal-Retzius Neuronogenesis and Hippocampal Morphogenesis to the Dorsomedial Pallium

Luca Muzio; Antonello Mallamaci

It has been suggested that cerebral cortex arealization relies on positional values imparted to early cortical neuroblasts by transcription factor genes expressed within the pallial field in graded ways. Foxg1, encoding for one of these factors, previously was reported to be necessary for basal ganglia morphogenesis, proper tuning of cortical neuronal differentiation rates, and the switching of cortical neuroblasts from early generation of primordial plexiform layer to late production of cortical plate. Being expressed along a rostral/lateralhigh- to-caudal/mediallow gradient, Foxg1, moreover, could contribute to shaping the cortical areal profile as a repressor of caudomedial fates. We tested this prediction by a variety of approaches and found that it was correct. We found that overproduction of Cajal-Retzius neurons characterizing Foxg1-/- mutants does not arise specifically from blockage of laminar histogenetic progression of neocortical neuroblasts, as reported previously, but rather reflects lateral-to-medial repatterning of their cortical primordium. Even if lacking a neocortical plate, Foxg1-/- embryos give rise to structures, which, for molecular properties and birthdating profile, are highly reminiscent of hippocampal plate and dentate blade. Remarkably, in the absence of Foxg1, additional inactivation of the medial fates promoter Emx2, although not suppressing cortical specification, conversely rescues overproduction of Reelinon neurons.


Cell Death & Differentiation | 2010

The link between inflammation, synaptic transmission and neurodegeneration in multiple sclerosis

Diego Centonze; Luca Muzio; Silvia Rossi; Roberto Furlan; Giorgio Bernardi; Gianvito Martino

Multiple sclerosis (MS) has been classically regarded as a disorder of the white matter of the central nervous system (CNS). However, early alterations of the neuronal compartment occurring in this disorder are partially independent of demyelination. Soluble inflammatory cytokines and glutamate have been proposed as major determinants of neurodegeneration in MS as well as in its experimental animal model, namely experimental autoimmune encephalomyelitis (EAE). The relationship between these two major determinants has been largely elusive. In recent years, unexpected connections have emerged between immune cells and soluble cytokines on the one hand, and synaptic transmission and neurodegeneration on the other. Neurophysiological recordings have recently shown that glutamate-mediated excitatory postsynaptic currents are enhanced during the early phase of EAE, because of altered expression and phosphorylation of AMPA receptors and the downregulation of the immediate early gene Arc/Arg3.1. The synaptic alterations occurring during neuroinflammatory diseases are largely mediated by inflammatory cytokines released from infiltrating T cells and from activated microglia, and are responsible, at least in part, for irreversible dendritic pathology. Collectively, the data covered in this review article suggest that CNS-confined inflammation in MS is associated with the release of soluble molecules, which are capable of altering excitatory synaptic transmission and, finally, of stimulating secondary neurodegenerative gray matter pathology.


Annals of Neurology | 2012

Interleukin-1β causes synaptic hyperexcitability in multiple sclerosis.

Silvia Rossi; Roberto Furlan; Valentina De Chiara; Caterina Motta; Valeria Studer; Francesco Mori; Alessandra Musella; Alessandra Bergami; Luca Muzio; Giorgio Bernardi; Luca Battistini; Gianvito Martino; Diego Centonze

The frequency of inflammatory episodes in the early stages of multiple sclerosis (MS) has been correlated with late neurodegeneration, but the mechanism by which inflammation gives rise to delayed neuronal damage is unknown. Increased activity of the neurotransmitter glutamate is thought to play a role in the inflammation‐driven neurodegenerative process of MS, and therefore we tested whether inflammatory cytokines released during acute MS attacks have the property of enhancing glutamate‐mediated transmission and excitotoxicity in central neurons.


Nature Communications | 2014

Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex

Benedetta Arnò; Francesca Grassivaro; Chiara Rossi; Andrea Bergamaschi; Valentina Castiglioni; Roberto Furlan; Melanie Greter; Rebecca Favaro; Giancarlo Comi; Burkhard Becher; Gianvito Martino; Luca Muzio

Microglia are observed in the early developing forebrain and contribute to the regulation of neurogenesis through still unravelled mechanisms. In the developing cerebral cortex, microglia cluster in the ventricular/subventricular zone (VZ/SVZ), a region containing Cxcl12-expressing basal progenitors (BPs). Here we show that the ablation of BP as well as genetic loss of Cxcl12 affect microglia recruitment into the SVZ. Ectopic Cxcl12 expression or pharmacological blockage of CxcR4 further supports that Cxcl12/CxcR4 signalling is involved in microglial recruitment during cortical development. Furthermore, we found that cell death in the developing forebrain triggers microglial proliferation and that this is mediated by the release of macrophage migration inhibitory factor (MIF). Finally, we show that the depletion of microglia in mice lacking receptor for colony-stimulating factor-1 (Csf-1R) reduces BPs into the cerebral cortex.


Brain Behavior and Immunity | 2011

Impaired striatal GABA transmission in experimental autoimmune encephalomyelitis.

Silvia Rossi; Luca Muzio; Valentina De Chiara; Giorgio Grasselli; Alessandra Musella; Gabriele Musumeci; Georgia Mandolesi; Roberta De Ceglia; Simona Maida; Emilia Biffi; Alessandra Pedrocchi; Andrea Menegon; Giorgio Bernardi; Roberto Furlan; Gianvito Martino; Diego Centonze

Synaptic dysfunction triggers neuronal damage in experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). While excessive glutamate signaling has been reported in the striatum of EAE, it is still uncertain whether GABA synapses are altered. Electrophysiological recordings showed a reduction of spontaneous GABAergic synaptic currents (sIPSCs) recorded from striatal projection neurons of mice with MOG((35-55))-induced EAE. GABAergic sIPSC deficits started in the acute phase of the disease (20-25days post immunization, dpi), and were exacerbated at later time-points (35, 50, 70 and 90dpi). Of note, in slices they were independent of microglial activation and of release of TNF-α. Indeed, sIPSC inhibition likely involved synaptic inputs arising from GABAergic interneurons, because EAE preferentially reduced sIPSCs of high amplitude, and was associated with a selective loss of striatal parvalbumin (PV)-positive GABAergic interneurons, which contact striatal projection neurons in their somatic region, giving rise to more efficient synaptic inhibition. Furthermore, we found also that the chronic persistence of pro-inflammatory cytokines were able, per se, to produce profound alterations of electrophysiological network properties, that were reverted by GABA administration. The results of the present investigation indicate defective GABA transmission in MS models depending from alteration of PV cells number and, in part, deriving from the effects of a chronic inflammation, and suggest that pharmacological agents potentiating GABA signaling might be considered to limit neuronal damage in MS patients.

Collaboration


Dive into the Luca Muzio's collaboration.

Top Co-Authors

Avatar

Gianvito Martino

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Roberto Furlan

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Giancarlo Comi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Antonello Mallamaci

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Andrea Bergamaschi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Diego Centonze

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Silvia Rossi

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Edoardo Boncinelli

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Giorgio Bernardi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Roberta De Ceglia

Vita-Salute San Raffaele University

View shared research outputs
Researchain Logo
Decentralizing Knowledge