Antonia Passarelli di Napoli
University of Naples Federico II
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonia Passarelli di Napoli.
Forum Mathematicum | 2008
Mikil Foss; Antonia Passarelli di Napoli; Anna Verde
Abstract We prove some global, up to the boundary of a domain Ω ⊂ ℝ n , continuity and Morrey regularity results for almost minimizers of functionals of the form . The main assumptions are that g is asymptotically convex and that it has superlinear polynomial growth with respect its third argument. The integrand is only required to be locally bounded with respect to its third argument. Some discontinuous behavior with respect to its other arguments is also allowed. We also provide an application of our results to a class of variational problems with obstacles.
Advances in Calculus of Variations | 2014
Antonia Passarelli di Napoli
In this paper we consider integral functionals of the form
Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze | 2014
Menita Carozza; Jan Kristensen; Antonia Passarelli di Napoli
We establish local higher integrability and differentiability results for minimizers of variational integrals
Journal of Global Optimization | 2017
Lina Mallozzi; Antonia Passarelli di Napoli
Nodea-nonlinear Differential Equations and Applications | 2015
Antonia Passarelli di Napoli
\mathfrak{F}(v,\Omega) = \int_{\Omega} /! F(Dv(x)) \, dx
Advances in Nonlinear Analysis | 2017
Albert Clop; Raffaella Giova; Antonia Passarelli di Napoli
Advances in Calculus of Variations | 2017
Raffaella Giova; Antonia Passarelli di Napoli
over
Journal of The London Mathematical Society-second Series | 2016
Flavia Giannetti; Antonia Passarelli di Napoli; Christoph Scheven
W^{1,p}
Rendiconti Lincei-matematica E Applicazioni | 2010
Flavia Giannetti; Antonia Passarelli di Napoli
--Sobolev mappings
Annales De L Institut Henri Poincare-analyse Non Lineaire | 2011
Menita Carozza; Jan Kristensen; Antonia Passarelli di Napoli
u \colon \Omega \subset {\mathbb R}^n \to {\mathbb R}^N