Francesco Leonetti
University of L'Aquila
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francesco Leonetti.
Journal de Mathématiques Pures et Appliquées | 1997
Francesco Leonetti; V. Nesi
Abstract We study fine properties of the gradient of the solution to the conductivity equation div (σ(χ)▿u(χ)) = 0 in bounded domains. Our analysis is restricted to dimension two and it is concerned with merely measurable, elliptic coefficients. We establish sharp results on the higher order of integrability of the modulus of the gradient and of the inverse of the modulus of the gradient of the solution with the aid of recent advances in the theory of quasiconformal mappings due to Astala, Eremenko and Hamilton. We also consider the first order system associated to the second order elliptic equation, hence defining the map w = (u, u ) and we isolate a class of Dirichlet boundary data on the function u which guarantees the quasiconformality of the mapping w. This leads in particular to a geometrical characterization of the electrostatic energy. We make use of results about the critical points of solutions of elliptic equations due to Alessandrini and Alessandrini and Magnanini.
Annali di Matematica Pura ed Applicata | 1992
Francesco Leonetti
SummaryWe consider a vector-valued function u ε Wloc1, q(Ω;RN),Ω ⊂RN,which is a weak solution of the elliptic system:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics | 1996
Daniela Giachetti; Francesco Leonetti; Rosanna Schianchi
Zeitschrift Fur Analysis Und Ihre Anwendungen | 2012
Francesco Leonetti; Elvira Mascolo
\begin{array}{*{20}c} { - \sum\limits_{i = 1}^n {D_i \{ a_\alpha ^i (x,Du(x))\} = 0,} } & {\alpha = 1,...,N.} \\ \end{array}
Journal of Mathematical Analysis and Applications | 2003
Francesco Leonetti; Elvira Mascolo; Francesco Siepe
Forum Mathematicum | 2006
Francesco Leonetti
If the so- called «p, q- growth conditions» hold, then we prove that:
Complex Variables and Elliptic Equations | 2011
Francesco Leonetti; Pier Vincenzo Petricca
Annali di Matematica Pura ed Applicata | 1996
Tilak Bhattacharya; Francesco Leonetti
\begin{array}{*{20}c} {(1 + |Du|^2 )^{{P \mathord{\left/ {\vphantom {P 4}} \right. \kern-\nulldelimiterspace} 4}} \in W_{loc}^{1,2} (\Omega );} & {x \to a_\alpha ^i (x,Du(x)) \in W_{loc}^{1,{q \mathord{\left/ {\vphantom {q {(q - 1)}}} \right. \kern-\nulldelimiterspace} {(q - 1)}}} (\Omega );} & {u \in } \\ \end{array} W_{loc}^{2,2} (\Omega ;R^N ).
Complex Variables and Elliptic Equations | 2013
Francesco Leonetti; Pier Vincenzo Petricca
Advances in Calculus of Variations | 2011
Francesco Leonetti; Pier Vincenzo Petricca
.