Antonino Davide Romano
University of Foggia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonino Davide Romano.
Gut | 2008
Gaetano Serviddio; Francesco Bellanti; Rosanna Tamborra; Tiziana Rollo; Nazzareno Capitanio; Antonino Davide Romano; Juan Sastre; Gianluigi Vendemiale; Emanuele Altomare
Background: The mechanisms of progression from fatty liver to steatohepatitis and cirrhosis are not well elucidated. Mitochondrial dysfunction represents a key factor in the progression of non-alcoholic steatohepatitis (NASH) as mitochondria are the main cellular site of fatty acid oxidation, ATP synthesis and reactive oxygen species (ROS) production. Aims: (1) To evaluate the role of the uncoupling protein 2 in controlling mitochondrial proton leak and ROS production in NASH rats and humans; and (2) to assess the acute liver damage induced by ischaemia–reperfusion in rats with NASH. Methods: Mitochondria were extracted from the livers of NASH humans and rats fed a methionine and choline deficient diet. Proton leak, H2O2 synthesis, reduced glutathione/oxidised glutathione, 4-hydroxy-2-nonenal (HNE)–protein adducts, uncoupling protein-2 (UCP2) expression and ATP homeostasis were evaluated before and after ischaemia–reperfusion injury. Results: NASH mitochondria exhibited an increased rate of proton leak due to upregulation of UCP2. These results correlated with increased production of mitochondrial hydrogen peroxide and HNE–protein adducts, and decreased hepatic ATP content that was not dependent on mitochondrial ATPase dysfunction. The application of an ischaemia–reperfusion protocol to these livers strongly depleted hepatic ATP stores, significantly increased mitochondrial ROS production and impaired ATPase activity. Livers from patients with NASH exhibited UCP2 over-expression and mitochondrial oxidative stress. Conclusions: Upregulation of UCP2 in human and rat NASH liver induces mitochondrial uncoupling, lowers the redox pressure on the mitochondrial respiratory chain and acts as a protective mechanism against damage progression but compromises the liver capacity to respond to additional acute energy demands, such as ischaemia–reperfusion. These findings suggest that UCP2-dependent mitochondria uncoupling is an important factor underlying events leading to NASH and cirrhosis.
European Journal of Clinical Investigation | 2008
Gaetano Serviddio; Francesco Bellanti; Rosanna Tamborra; Tiziana Rollo; Antonino Davide Romano; Anna Maria Giudetti; Nazzareno Capitanio; Antonio Petrella; Gianluigi Vendemiale; Emanuele Altomare
Background Mitochondrial dysfunction is considered a key player in non‐alcoholic steatohepatitis (NASH) but no data are available on the mitochondrial function and ATP homeostasis in the liver during NASH progression. In the present paper we evaluated the hepatic mitochondrial respiratory chain activity and ATP synthesis in a rodent model of NASH development.
Nephrology Dialysis Transplantation | 2008
Gaetano Serviddio; Antonino Davide Romano; Loreto Gesualdo; Rosanna Tamborra; Anna Maria Di Palma; Tiziana Rollo; Emanuele Altomare; Gianluigi Vendemiale
BACKGROUND Several recent studies have shown that a brief ischaemia applied during the onset of reperfusion (postconditioning) is cardioprotective in different animal models. The potential application of postconditioning to organs different from the heart, i.e. kidney, is not available and is investigated in the present study. We also tested the hypothesis that mitochondria play a central role in renal protection during reperfusion. METHODS Wistar rats were subjected to left nephrectomy and 90-min right kidney occlusion. In controls, the blood flow was restored without intervention. In postconditioned rats, complete reperfusion was preceded by 3 min, 6 min and 12 min of reperfusion in a consecutive sequence, each separated by 5 min of reocclusion. Animals were studied for 48 h. Mitochondrial respiratory chain function, rate of hydroperoxide production and carbonyl proteins were measured at the end of postconditioning and 24 h and 48 h after reperfusion. RESULTS BUN and creatinine significantly decreased in the postconditioning group as compared to control rats. Mitochondrial respiratory function was significantly impaired in control rats, mainly at the level of Complex II. Postconditioning significantly reduced this mitochondria impairment. The rate of mitochondrial peroxide production was higher in the control group than in the protected group at the end of postconditioning reperfusion. Moreover, mitochondrial protein oxidation was significantly higher in control rats than in the postconditioning group at the end of reperfusion. Conclusions. In the present study, postconditioning reduced renal functional injury and reduces mitochondria respiratory chain impairment, mitochondria peroxide production and protein damage.
Neurobiology of Aging | 2012
Tommaso Cassano; Gaetano Serviddio; Silvana Gaetani; Adele Romano; Pasqua Dipasquale; Silvia Cianci; Francesco Bellanti; Leonardo Laconca; Antonino Davide Romano; Iolanda Padalino; Frank M. LaFerla; Ferdinando Nicoletti; Vincenzo Cuomo; Gianluigi Vendemiale
Deficits in glutamate neurotransmission and mitochondrial functions were detected in the frontal cortex (FC) and hippopcampus (HIPP) of aged 3×Tg-Alzheimers disease (AD) mice, compared with their wild type littermates (non-Tg). In particular, basal levels of glutamate and vesicular glutamate transporter 1 (VGLUT1) expression were reduced in both areas. Cortical glutamate release responded to K(+) stimulation, whereas no peak release was observed in the HIPP of mutant mice. Synaptosomal-associated protein 25 (SNAP-25), glutamate/aspartate transporter (GLAST), glutamate transporter 1 (GLT1) and excitatory amino acid carrier 1 (EAAC1) were reduced in HIPP homogenates, where the adenosine triphosphate (ATP) content was lower. In contrast, glutamate transporter 1 and glial fibrillary acidic protein (GFAP) were found to be higher in the frontal cortex. The respiration rates of complex-I, II, IV, and the membrane potential were reduced in cortical mitochondria, where unaltered proton leak, F(0)F(1)-ATPase activity and ATP content, with increased hydrogen peroxide production (H(2)O(2)), were also observed. In contrast, complex-I respiration rate was significantly increased in hippocampal mitochondria, together with increased proton leak and H(2)O(2) production. Moreover, loss of complex-IV and F(0)F(1)-ATPase activities were observed. These data suggest that impairments of mitochondrial bioenergetics might sustain the failure in the energy-requiring glutamatergic transmission.
Free Radical Biology and Medicine | 2011
Gaetano Serviddio; Francesco Bellanti; Anna Maria Giudetti; Gabriele V. Gnoni; Nazzareno Capitanio; Rosanna Tamborra; Antonino Davide Romano; Maurizio Quinto; Maria Blonda; Gianluigi Vendemiale; Emanuele Altomare
The role played by oxidative stress in amiodarone-induced mitochondrial toxicity is debated. Dronedarone shows pharmacological properties similar to those of amiodarone but several differences in terms of toxicity. In this study, we analyzed the effects of the two drugs on liver mitochondrial function by administering an equivalent human dose to a rat model. Amiodarone increased mitochondrial H(2)O(2) synthesis, which in turn induced cardiolipin peroxidation. Moreover, amiodarone inhibited Complex I activity and uncoupled oxidative phosphorylation, leading to a reduction in the hepatic ATP content. We also observed a modification of membrane phospholipid composition after amiodarone administration. N-acetylcysteine completely prevented such effects. Although dronedarone shares with amiodarone the capacity to induce uncoupling of oxidative phosphorylation, it did not show any of the oxidative effects and did not impair mitochondrial bioenergetics. Our data provide important insights into the mechanism of mitochondrial toxicity induced by amiodarone. These results may greatly influence the clinical application and toxicity management of these two antiarrhythmic drugs.
Journal of Pharmacology and Experimental Therapeutics | 2010
Gaetano Serviddio; Francesco Bellanti; Anna Maria Giudetti; Gabriele V. Gnoni; Antonio Petrella; Rosanna Tamborra; Antonino Davide Romano; Tiziana Rollo; Gianluigi Vendemiale; Emanuele Altomare
Mitochondrial dysfunction and oxidative stress are determinant events in the pathogenesis of nonalcoholic steatohepatitis. Silybin has shown antioxidant, anti-inflammatory, and antifibrotic effects in chronic liver disease. We aimed to study the effect of the silybin-phospholipid complex (SILIPHOS) on liver redox balance and mitochondrial function in a dietary model of nonalcoholic steatohepatitis. To accomplish this, glutathione oxidation, mitochondrial oxygen uptake, proton leak, ATP homeostasis, and H2O2 production rate were evaluated in isolated liver mitochondria from rats fed a methionine- and choline-deficient (MCD) diet and the MCD diet plus SILIPHOS for 7 and 14 weeks. Oxidative proteins, hydroxynonenal (HNE)- and malondialdehyde (MDA)-protein adducts, and mitochondrial membrane lipid composition were also measured. Treatment with SILIPHOS limited glutathione depletion and mitochondrial H2O2 production. Moreover, SILIPHOS preserved mitochondrial bioenergetics and prevented mitochondrial proton leak and ATP reduction. Finally, SILIPHOS limited the formation of HNE- and MDA-protein adducts. In conclusion, SILIPHOS is effective in preventing severe oxidative stress and preserving hepatic mitochondrial bioenergetics in nonalcoholic steatohepatitis induced by the MCD diet. The modifications of mitochondrial membrane fatty acid composition induced by the MCD diet are partially prevented by SILIPHOS, conferring anti-inflammatory and antifibrotic effects. The increased vulnerability of lipid membranes to oxidative damage is limited by SILIPHOS through preserved mitochondrial function.
Redox Report | 2007
Gaetano Serviddio; Francesco Bellanti; Antonino Davide Romano; Rosanna Tamborra; Tiziana Rollo; Emanuele Altomare; Gianluigi Vendemiale
Abstract Aging is associated with a decline in performance in many organs and loss of physiological performance can be due to free radicals. Mitochondria are incompletely coupled: during oxidative phosphorylation some of the redox energy is dissipated as natural proton leak across the inner membrane. To verify whether proton leak occurs in mitochondria during aging, we measured the mitochondrial respiratory chain activity, membrane potential and proton leak in liver, kidneys and heart of young and old rats. Mitochondria from old rats showed normal rates of Complex I and Complex II respiration. However, they had a lower membrane potential compared to mitochondria from younger rats. In addition, they exhibited an increased rate of proton conductance which partially dissipated the mitochondrial membrane potential when the rate of electron transport was suppressed. This could compromise energy homeostasis in aging cells in conditions that require additional energy supply and could minimize oxidative damage to DNA.
Maturitas | 2018
Francesco Bellanti; Antonino Davide Romano; Aurelio Lo Buglio; Valeria Castriotta; Giuseppe Guglielmi; Antonio Greco; Gaetano Serviddio; Gianluigi Vendemiale
OBJECTIVES To define whether circulating markers of oxidative stress correlate with sarcopenia in terms of glutathione balance and oxidative protein damage, and whether these biomarkers are associated with risk of cardiovascular disease (CVD). STUDY DESIGN Population-based cross-sectional study. 115 out of 347 elderly subjects were classified as non-sarcopenic non-obese (NS-NO), sarcopenic non-obese (S-NO), non-sarcopenic obese (NS-O), and sarcopenic obese (S-O). MAIN OUTCOME MEASUREMENTS Sarcopenia was defined as a relative skeletal muscle mass index (RASM) <7.25kg/m2 for men or <5.67kg/m2 for women, while obesity was diagnosed in those presenting with% fat >27 for men or >38 for women. The CVD risk was estimated by the carotid intima-media thickness (IMT) and the Framingham score. Blood reduced glutathione (GSH), oxidized glutathione (GSSG), plasma malondialdehyde-(MDA) and 4-hydroxy-2,3-nonenal-(HNE) protein adducts were analyzed. RESULTS Significantly greater blood GSSG/GSH ratio and plasma MDA/HNE protein adducts were observed in sarcopenic than in non-sarcopenic patients. A logistic regression model showed a close relationship between serum HNE and MDA adducts and sarcopenia (OR=1.133, 95% CI 1.057-1.215, and OR=1.592, 95% CI 1.015-1.991, respectively). Linear and logistic regression analysis evidenced strong associations between the IMT or the Framingham CVD risk category and blood GSSG/GSH or serum HNE protein adducts in the S-O group. CONCLUSION Circulating markers of oxidative stress are increased in sarcopenia and related to CVD risk in sarcopenic obesity, suggesting that redox balance analysis would be a useful part of a multidimensional evaluation in aging. Further research is encouraged to support interventional strategies to correct redox imbalance, which might contribute to the prevention or at least limitation of sarcopenia and its co-morbidities.
Archive | 2013
Antonino Davide Romano; Gianluigi Vendemiale
During the past decade, the knowledge of clinical course and management of hepatitis C virus (HCV) infection has increased enormously, but there are few data on the course of the disease and its treatment in the elderly population (age > 60 years). According to its epidemiology, we are now facing HCV infection from the 20th century. We must take into account that in contrast to a younger population, old people who will develop Chronic C Hepatitis will be mainly women with genotype 1 and more severe fibrosis as clinical presentation pattern.
Aging Clinical and Experimental Research | 2013
Gianluigi Vendemiale; Antonino Davide Romano; Mariangela Dagostino; Angela de Matthaeis; Gaetano Serviddio