Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonino Maltese is active.

Publication


Featured researches published by Antonino Maltese.


Remote Sensing | 2013

Investigating the Relationship between X-Band SAR Data from COSMO-SkyMed Satellite and NDVI for LAI Detection

Fulvio Capodici; Guido D'Urso; Antonino Maltese

Monitoring spatial and temporal variability of vegetation is important to manage land and water resources, with significant impact on the sustainability of modern agriculture. Cloud cover noticeably reduces the temporal resolution of retrievals based on optical data. COSMO-SkyMed (the new Italian Synthetic Aperture RADAR-SAR) opened new opportunities to develop agro-hydrological applications. Indeed, it represents a valuable source of data for operational use, due to the high spatial and temporal resolutions. Although X-band is not the most suitable to model agricultural and hydrological processes, an assessment of vegetation development can be achieved combing optical vegetation indices (VIs) and SAR backscattering data. In this paper, a correlation analysis has been performed between the crossed horizontal-vertical (HV) backscattering (s°HV) and optical VIs (VIopt) on several plots. The correlation analysis was based on incidence angle, spatial resolution and polarization mode. Results have shown that temporal changes of s°HV (Δs°HV) acquired with high angles (off nadir angle; θ > 40°) best correlates with variations of VIopt (ΔVI). The correlation between ΔVI and Δs°HV has been shown to be temporally robust. Based on this experimental evidence, a model to infer a VI from s° (VISAR) at the time, ti + 1, once known, the VIopt at a reference time, ti, and Δs°HV between times, ti + 1 and ti, was implemented and verified. This approach has led to the development and validation of an algorithm for coupling a VIopt derived from DEIMOS-1 images and s°HV. The study was carried out over the Sele plain (Campania, Italy), which is mainly characterized by herbaceous crops. In situ measurements included leaf area index (LAI), which were collected weekly between August and September 2011 in 25 sites, simultaneously to COSMO-SkyMed (CSK) and DEIMOS-1 imaging. Results confirm that VISAR obtained using the combined model is able to increase the feasibility of operational satellite-based products for supporting agricultural practices. This study is carried out in the framework of the COSMOLAND project (Use of COSMO-SkyMed SAR data for LAND cover classification and surface parameters retrieval over agricultural sites) funded by the Italian Space Agency (ASI).


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2013

Critical analysis of thermal inertia approaches for surface soil water content retrieval

Antonino Maltese; Paul D. Bates; Fulvio Capodici; Marcella Cannarozzo; Giuseppe Ciraolo; G. La Loggia

Abstract The “thermal inertia” method to retrieve surface soil water content maps on bare or sparsely-vegetated soils is analysed. The study area is a small experimental watershed, where optical and thermal images (in day and night time) and in situ data were simultaneously acquired. The sensitivity of thermal inertia to the phase difference between incoming radiation and soil temperature is demonstrated. Thus, to obtain an accurate value of the phase difference, the temporal distance between thermographs using a three-temperature approach is evaluated. We highlight when a cosine correction of the temperature needs to be applied, depending on whether the thermal inertia formulation includes two generic acquisition times, or not. Finally, the deviation in soil water content retrieval is quantifies for given values of each parameter by performing a sensitivity analysis on the basic parameters of the thermal inertia method that are usually affected by calibration errors. Citation Maltese, A., Bates, P.D., Capodici, F., Cannarozzo, M., Ciraolo, G., and La Loggia, G., 2013. Critical analysis of thermal inertia approaches for surface soil water content retrieval. Hydrological Sciences Journal, 58 (5), 1144–1161. Editor D. Koutsoyiannis; Associate editor D. Hughes


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2018

Measurements and Observations in the XXI century (MOXXI): innovation and multi-disciplinarity to sense the hydrological cycle

Flavia Tauro; John S. Selker; Nick van de Giesen; Tommaso Abrate; R. Uijlenhoet; Maurizio Porfiri; Salvatore Manfreda; Kelly K. Caylor; Tommaso Moramarco; Jérôme Benveniste; Giuseppe Ciraolo; Lyndon Estes; Alessio Domeneghetti; Matthew T Perks; Chiara Corbari; Ehsan Rabiei; Giovanni Ravazzani; Heye Bogena; Antoine Harfouche; Luca Brocca; Antonino Maltese; Andy Wickert; Angelica Tarpanelli; Stephen P. Good; Jose Manuel Lopez Alcala; Andrea Petroselli; Christophe Cudennec; Theresa Blume; Rolf Hut; Salvatore Grimaldi

ABSTRACT To promote the advancement of novel observation techniques that may lead to new sources of information to help better understand the hydrological cycle, the International Association of Hydrological Sciences (IAHS) established the Measurements and Observations in the XXI century (MOXXI) Working Group in July 2013. The group comprises a growing community of tech-enthusiastic hydrologists that design and develop their own sensing systems, adopt a multi-disciplinary perspective in tackling complex observations, often use low-cost equipment intended for other applications to build innovative sensors, or perform opportunistic measurements. This paper states the objectives of the group and reviews major advances carried out by MOXXI members toward the advancement of hydrological sciences. Challenges and opportunities are outlined to provide strategic guidance for advancement of measurement, and thus discovery.


Remote Sensing | 2018

On the Use of Unmanned Aerial Systems for Environmental Monitoring

Salvatore Manfreda; Matthew F. McCabe; Pauline E. Miller; Richard Lucas; Victor Pajuelo Madrigal; Giorgos Mallinis; Eyal Ben Dor; David Helman; Lyndon D. Estes; Giuseppe Ciraolo; Jana Müllerová; Flavia Tauro; M. I. P. de Lima; João de Lima; Antonino Maltese; Félix Francés; Kelly K. Caylor; Marko Kohv; Matthew T Perks; Guiomar Ruiz-Pérez; Zhongbo Su; Giulia Vico; Brigitta Toth

Environmental monitoring plays a central role in diagnosing climate and management impacts on natural and agricultural systems; enhancing the understanding of hydrological processes; optimizing the allocation and distribution of water resources; and assessing, forecasting, and even preventing natural disasters. Nowadays, most monitoring and data collection systems are based upon a combination of ground-based measurements, manned airborne sensors, and satellite observations. These data are utilized in describing both small- and large-scale processes, but have spatiotemporal constraints inherent to each respective collection system. Bridging the unique spatial and temporal divides that limit current monitoring platforms is key to improving our understanding of environmental systems. In this context, Unmanned Aerial Systems (UAS) have considerable potential to radically improve environmental monitoring. UAS-mounted sensors offer an extraordinary opportunity to bridge the existing gap between field observations and traditional air- and space-borne remote sensing, by providing high spatial detail over relatively large areas in a cost-effective way and an entirely new capacity for enhanced temporal retrieval. As well as showcasing recent advances in the field, there is also a need to identify and understand the potential limitations of UAS technology. For these platforms to reach their monitoring potential, a wide spectrum of unresolved issues and application-specific challenges require focused community attention. Indeed, to leverage the full potential of UAS-based approaches, sensing technologies, measurement protocols, postprocessing techniques, retrieval algorithms, and evaluation techniques need to be harmonized. The aim of this paper is to provide an overview of the existing research and applications of UAS in natural and agricultural ecosystem monitoring in order to identify future directions, applications, developments, and challenges.


Journal of Applied Remote Sensing | 2013

Mapping soil water content under sparse vegetation and changeable sky conditions: comparison of two thermal inertia approaches

Antonino Maltese; Fulvio Capodici; Giuseppe Ciraolo; Goffredo La Loggia

A critical analysis of a thermal inertia approach to map surface soil water content on bare and sparsely vegetated soils by means of remotely sensed data is reported. The study area is an experimental field located in Barrax, Spain. In situ data were acquired within the Barrax 2011 research project. An advanced hyperspectral scanner airborne imager provides images in the visible/near-infrared and thermal infrared bands. Images were acquired both in day and night times by the Instituto Nacional de Tecnica Aeroespacial between 12th and 13th of June 2011. The scene covers a corn irrigation pivot surrounded by bare soil, where a set of in situ data have been collected both previously and simultaneously to overpasses. To validate remotely sensed estimations, an ad hoc dataset has been produced by measuring spectra, radiometric temperatures, surface soil water content, and soil thermal properties. These data were collected on two transects covering bare and sparsely vegetated soils. This ground dataset was used (1) to verify if a thermal inertia method can be applied to map the water content on soil covered by sparse vegetation and (2) to quantify a correction factor accounting for solar radiation reduction due to sky cloudiness. The experiment intended to test a spatially constant and a spatially distributed approach to estimate the phase difference. Both methods were then applied to the airborne images collected during the following days to obtain the spatial distribution of surface soil water content. Results confirm that the thermal inertia method can be applied to sparsely vegetated soil characterized by low fractional cover if the solar radiation reaching the ground is accurately estimated. A spatially constant value of the phase difference allows a good assessment of thermal inertia, whereas the comparison with the three-temperature approach did not give conclusive responses. Results also show that clear sky, only at the time of the acquisition, does not provide a sufficient condition to obtain accurate estimates of soil water content. A corrective coefficient taking into account actual sky cloudiness throughout the day allows better estimates of thermal inertia and, thus, of soil water content.


Remote Sensing | 2010

A thermal inertia model for soil water content retrieval using thermal and multispectral images

Antonino Maltese; Mario Minacapilli; Carmelo Cammalleri; Giuseppe Ciraolo; F. D'Asaro

Soil moisture is difficult to quantify because of its high spatial variability. Consequently, great efforts have been undertaken by the research community to develop practical remote sensing approaches to estimate the spatial distribution of surface soil moisture over large areas and with high spatial detail. Many methodologies have been developed using remote sensing data acquiring information in different parts of the electromagnetic spectrum. Conventional field measurement techniques (including gravimetric and time-domain reflectometry) are point-based, involve on-site operators, are time expensive and, in any case, do not provide exhaustive information on the spatial distribution of soil moisture because it strongly depends on pedology, soil roughness and vegetation cover. The technological development of imaging sensors acquiring in the visible (VIS), near infrared (NIR) and thermal infrared (TIR), renewed the research interest in setting up remote sensed based techniques aimed to retrieve soil water content variability in the soil-plant-atmosphere system (SPA). In this context different approaches have been widely applied at regional scale throughout synthetic indexes based on VIS, NIR and TIR spectral bands. A laboratory experiment has been carried out to verify a physically based model based on the remote estimation of the soil thermal inertia, P, to indirectly retrieve the soil surface water content, θ. The paper shows laboratory retrievals using simultaneously a FLIR A320G thermal camera, a six bands customized TETRACAM MCA II (Multiple Camera Array) multispectral camera working in the VIS/NIR part of the spectrum. Using these two type of sensors a set of VIS/NIR and TIR images were acquired as the main input dataset to retrieve the spatial variability of the thermal inertia values. Moreover, given that the accuracy of the proposed approach strongly depends on the accurate estimation of the soil thermal conductivity, a Decagon Device KD2 PRO thermal analyzer was used to verify the remotely estimate of thermal conductivity. Remotely estimated water contents were validated using the gravimetric method. The considered thermal inertia approach allowed prediction of the spatial distribution of the soil water with a satisfactory level of accuracy.


Remote Sensing for Agriculture, Ecosystems, and Hydrology XIV | 2012

Critical analysis of the thermal inertia approach to map soil water content under sparse vegetation and changeable sky conditions

Antonino Maltese; Fulvio Capodici; Chiara Corbari; Giuseppe Ciraolo; Goffredo La Loggia; José A. Sobrino

The paper reports a critical analysis of the thermal inertia approach to map surface soil water content on bare and sparsely vegetated soils by means of remotely sensed data. The study area is an experimental area located in Barrax (Spain). Field data were acquired within the Barrax 2011 research project. AHS airborne images including VIS/NIR and TIR bands were acquired both day and night time by the INTA (Instituto Nacional de Técnica Aeroespacial) between the 11th and 13rd of June 2011. Images cover a corn pivot surrounded by bare soil, where a set of in situ data have been collected previously and simultaneously to overpasses. To validate remotely sensed estimations, a preliminary proximity sensing set up has been arranged, measuring spectra and surface temperatures on transects by means of ASD hand-held spectroradiometer and an Everest Interscience radiometric thermometer respectively. These data were collected on two transects: the first one on bare soil and the second from bare to sparsely vegetated soil; soil water content in both transects ranged approximately between field and saturation values. Furthermore thermal inertia was measured using a KD2Pro probe, and surface water content of soil was measured using FDR and TDR probes. This ground dataset was used: 1) to verify if the thermal inertia method can be applied to map water content also on soil covered by sparse vegetation, and 2) to quantify a correction factor of the downwelling shortwave radiation taking into account sky cloudiness effects on thermal inertia assessment. The experiment tests both Xue and Cracknell approximation to retrieve the thermal inertia from a dumped value of the phase difference and the three-temperature approach of Sobrino to estimate the phase difference spatial distribution. Both methods were then applied on the remotely sensed airborne images collected during the following days, in order to obtain the spatial distribution of the surface soil moisture on bare soils and sparse vegetation coverage. Results verify that the thermal inertia method can be applied on sparsely vegetated soil characterized by fractional cover up to ~0.25 (maximum value within this experiment); a lumped value of the phase difference allows a good estimate of the thermal inertia, whereas the comparison with the three-temperature approach did not give conclusive responses because ground radiometric temperatures were not acquired in optimal conditions. Results also show that clear sky only at the time of the remote sensing acquisitions is not a sufficient condition to apply the thermal inertia method. A corrective coefficient taking into account the actual sky cloudiness throughout the day allows accurate estimates of the spatial distribution of the thermal inertia (r2 ~ 0.9) and soil water content (r2 ~ 0.7).


Science of The Total Environment | 2018

The impact of soil erosion on soil fertility and vine vigor. A multidisciplinary approach based on field, laboratory and remote sensing approaches

Agata Novara; Antonino Pisciotta; Mario Minacapilli; Antonino Maltese; Fulvio Capodici; Artemi Cerdà; Luciano Gristina

Soil erosion processes in vineyards, beyond surface runoff and sediment transport, have a strong effect on soil organic carbon (SOC) loss and redistribution along the slope. Variation in SOC across the landscape can determine differences in soil fertility and vine vigor. The goal of this research was to analyze the interactions among vines vigor, sediment delivery and SOC in a sloping vineyard located in Sicily. Six pedons were studied along the slope by digging 6 pits up to 60cm depth. Soil was sampled every 10cm and SOC, water extractable organic carbon (WEOC) and specific ultraviolet absorbance (SUVA) were analyzed. Erosion rates, detachment and deposition areas were measured by the pole height method which allowed mapping of the soil redistribution. The vigor of vegetation, expressed as Normalized Difference Vegetation Index (NDVI), derived from high-resolution satellite multispectral data, was compared with measured pruning weight. Results confirmed that soil erosion, sediment redistribution and SOC across the slope was strongly affected by topographic features, slope and curvature. The erosion rate was 16Mgha-1y-1 since the time of planting (6years). SOC redistribution was strongly correlated with the detachment or deposition areas as highlighted by pole height measurements. The off-farm SOC loss over six years amounted to 1.2MgCha-1. SUVA254 values, which indicate hydrophobic material rich in aromatic constituents of WEOC, decreased significantly along the slope, demonstrating that WEOC in the detachment site is more stable in comparison to deposition sites. The plant vigor was strongly correlated with WEOC constituents. Results demonstrated that high resolution passive remote sensing data combined with soil and plant analyses can survey areas with contrasting SOC, soil fertility, soil erosion and plant vigor. This will allow monitoring of soil erosion and degradation risk areas and support decision-makers in developing measures for friendly environmental management.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2013

Coupling two radar backscattering models to assess soil roughness and surface water content at farm scale

Fulvio Capodici; Antonino Maltese; Giuseppe Ciraolo; G. La Loggia; G. D’Urso

Abstract Remote sensing techniques are useful for agro-hydrological monitoring at the farm scale because the availability of spatially and temporally distributed data improves agricultural models for irrigation and crop yield optimization under water scarcity conditions. This research focuses on the surface water content retrieval using active microwave data. Two semi-empirical models were chosen as these showed the best performances in simulating cross and co-polarized backscatter. Thus, these models were coupled to obtain reliable assessments of both soil water content and soil roughness. The use of the coupled model enables one to avoid using roughness measured in situ. Remote sensing images and in situ data were collected between April and July 2006 within the European Space Agency-funded project AgriSAR 2006. The images data set includes L-band in HH, VV and VH polarizations acquired from the airborne E-SAR sensor, operated by the German Aerospace Centre. Results were validated using in situ soil water content and roughness measurements. The results show that reliable assessment of both soil roughness (r 2 up to ˜0.8) and soil water content (r 2 ˜ 0.9) can be retrieved in fields characterized by low fractional coverage. Editor D. Koutsoyiannis; Associate editor C. Onof Citation Capodici, F., Maltese, A., Ciraolo, G., La Loggia, G., and D’Urso, G., 2013. Coupling two radar backscattering models to assess soil roughness and surface water content at the farm scale. Hydrological Sciences Journal, 58 (8), 1677–1689.


SPIE Europe Remote Sensing 2009 - Remote Sensing for Agriculture, Ecosystems, and Hydrology XI | 2009

Critical analysis of empirical ground heat flux equations on a cereal field using micrometeorological data

Carmelo Cammalleri; Goffredo La Loggia; Antonino Maltese

The rate at which the net radiation is transferred to the soil as ground heat flux varies with surface characteristics. Surface energy balance algorithms use empirical relationships taking into account the effects of the canopy cover to insulate the soil through vegetation indexes, the soil capacity to absorb incoming net radiation via the albedo, and the surface temperature promoting the energy transfer. However empirical relationships are often dependent on local conditions, such as the soil humidity and vegetation type. Ground heat flux assumes a minimum value in case of full canopy cover and a maximum value for dry bare soil. Aim of the present research is the critical analysis of some ground heat flux equations on a homogeneous field of cereal using measured data acquired between February and May 2008. The study period covers almost a full phenological cycle, including phases characterised by a significant change in both reflected radiation and vegetation cover. The dataset begins with the emergence phase, in November, within which shoots emerge from the ground and finishes with the flowering phase, in May, when tiny white stems begin to come-out; moreover the dataset includes a bare soil period (from September up to November). The daily evapotranspiration is calculated in energy balance models under the hypotheses of negligible daily ground heat flux and constant daily evaporative fraction. Actually micrometeorological data show that daily average ground heat flux is not null but characterised by an increasing or decreasing transient. As a consequence, it is particular important to assess the effects of neglecting the daily ground heat flux on daily evapotranspiration estimation.

Collaboration


Dive into the Antonino Maltese's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guido D'Urso

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Christopher M. U. Neale

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge