Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Ciraolo is active.

Publication


Featured researches published by Giuseppe Ciraolo.


Journal of Hydraulic Research | 2006

Flow resistance of Posidonia oceanica in shallow water

Giuseppe Ciraolo; Giovanni Battista Ferreri; Goffredo La Loggia

Management of coastal waters and lagoons by mathematical circulation models requires determination of the hydraulic resistance of submerged vegetation. A plant typical of sandy coastal bottoms in the Mediterranean Sea is Posidonia oceanica, which is constituted by very thin and flexible ribbon-like leaves, about 1 cm wide and up to 1.5m long, and usually covers the bottom with a density of 500–1000 plants/m2. From the hydraulic viewpoint, P. oceanica constitutes a particular roughness, because, as the velocity increases, the leaves bend more and more until they lie down on the bottom. Although P. oceanica is widespread, in the technical literature it is difficult to find indications about flow resistance due to this plant. In this paper, the results of specific experimental research are reported. The runs were carried out in a laboratory flume, where the plants were reproduced assembling plastic strips. In these experiments, the leaf length was larger than the flow depth, reproducing a shallow water situation which is very frequent in lagoons. The results allow one to recognize the hydraulic behaviour of the plants with variation in the Reynolds number of flow and the ratio between the leaf length and the flow depth. Velocity distribution in the section is also examined and a simple flow resistance law is achieved, which expresses Darcy–Weisbachs friction factor as a function only of a particular Reynolds number.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2013

Critical analysis of thermal inertia approaches for surface soil water content retrieval

Antonino Maltese; Paul D. Bates; Fulvio Capodici; Marcella Cannarozzo; Giuseppe Ciraolo; G. La Loggia

Abstract The “thermal inertia” method to retrieve surface soil water content maps on bare or sparsely-vegetated soils is analysed. The study area is a small experimental watershed, where optical and thermal images (in day and night time) and in situ data were simultaneously acquired. The sensitivity of thermal inertia to the phase difference between incoming radiation and soil temperature is demonstrated. Thus, to obtain an accurate value of the phase difference, the temporal distance between thermographs using a three-temperature approach is evaluated. We highlight when a cosine correction of the temperature needs to be applied, depending on whether the thermal inertia formulation includes two generic acquisition times, or not. Finally, the deviation in soil water content retrieval is quantifies for given values of each parameter by performing a sensitivity analysis on the basic parameters of the thermal inertia method that are usually affected by calibration errors. Citation Maltese, A., Bates, P.D., Capodici, F., Cannarozzo, M., Ciraolo, G., and La Loggia, G., 2013. Critical analysis of thermal inertia approaches for surface soil water content retrieval. Hydrological Sciences Journal, 58 (5), 1144–1161. Editor D. Koutsoyiannis; Associate editor D. Hughes


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2018

Measurements and Observations in the XXI century (MOXXI): innovation and multi-disciplinarity to sense the hydrological cycle

Flavia Tauro; John S. Selker; Nick van de Giesen; Tommaso Abrate; R. Uijlenhoet; Maurizio Porfiri; Salvatore Manfreda; Kelly K. Caylor; Tommaso Moramarco; Jérôme Benveniste; Giuseppe Ciraolo; Lyndon Estes; Alessio Domeneghetti; Matthew T Perks; Chiara Corbari; Ehsan Rabiei; Giovanni Ravazzani; Heye Bogena; Antoine Harfouche; Luca Brocca; Antonino Maltese; Andy Wickert; Angelica Tarpanelli; Stephen P. Good; Jose Manuel Lopez Alcala; Andrea Petroselli; Christophe Cudennec; Theresa Blume; Rolf Hut; Salvatore Grimaldi

ABSTRACT To promote the advancement of novel observation techniques that may lead to new sources of information to help better understand the hydrological cycle, the International Association of Hydrological Sciences (IAHS) established the Measurements and Observations in the XXI century (MOXXI) Working Group in July 2013. The group comprises a growing community of tech-enthusiastic hydrologists that design and develop their own sensing systems, adopt a multi-disciplinary perspective in tackling complex observations, often use low-cost equipment intended for other applications to build innovative sensors, or perform opportunistic measurements. This paper states the objectives of the group and reviews major advances carried out by MOXXI members toward the advancement of hydrological sciences. Challenges and opportunities are outlined to provide strategic guidance for advancement of measurement, and thus discovery.


Chemistry and Ecology | 2004

Influence of hydrodynamic conditions on the production and fate of Posidonia oceanica in a semi-enclosed Shallow Basin (stagnone di marsala, Western Sicily)

G. La Loggia; Sebastiano Calvo; Giuseppe Ciraolo; Antonio Mazzola; Maria Pirrotta; Gianluca Sarà; Agostino Tomasello; Salvatrice Vizzini

An integrated approach using hydrodynamic and transport numerical models, lepidochronology and stable isotope analysis was used to investigate how local hydrodynamic conditions influence the primary production and fate of the seagrass Posidonia oceanica in a Mediterranean semi-enclosed marine system (Stagnone di Marsala). The water mass exchange aptitude of different sectors of the basin was analysed, and data collected were used to select two sectors (colonized by Posidonia oceanica showing the lowest and highest water exchange values) for biological analyses. According to the mean dispersal coefficient differences simulated by the hydrodynamic model, growth rate and primary production of P. oceanica differed between sectors, with average values lower in the central sector where water exchange is lower than in the southern sector. Although P. oceanica coverage and primary production were higher in the southern sector, carbon and nitrogen stable isotope analysis suggests that the transfer of seagrass organic matter to higher trophic levels of the food web was higher in the central sector. The possibility of a link between hydrodynamism, production and fate of organic matter is proposed to explain the observed patterns.


Environmental Fluid Mechanics | 2012

Wind- and tide-induced currents in the Stagnone lagoon (Sicily)

Mauro De Marchis; Giuseppe Ciraolo; Carmelo Nasello; Enrico Napoli

The hydrodynamic circulation is analyzed in the coastal lagoon of Stagnone di Marsala, a natural reserve located in the north-western part of Sicily, using both experimental measurements and numerical simulations. Field measurements of velocities and water levels, carried out using an ultrasound sensor (3D), are used to validate the numerical model. A 3D finite-volume model is used to solve the Reynolds-averaged momentum and mass balance differential equations on a curvilinear structured grid, employing the k–


Remote Sensing | 2018

On the Use of Unmanned Aerial Systems for Environmental Monitoring

Salvatore Manfreda; Matthew F. McCabe; Pauline E. Miller; Richard Lucas; Victor Pajuelo Madrigal; Giorgos Mallinis; Eyal Ben Dor; David Helman; Lyndon D. Estes; Giuseppe Ciraolo; Jana Müllerová; Flavia Tauro; M. I. P. de Lima; João de Lima; Antonino Maltese; Félix Francés; Kelly K. Caylor; Marko Kohv; Matthew T Perks; Guiomar Ruiz-Pérez; Zhongbo Su; Giulia Vico; Brigitta Toth


Journal of Applied Remote Sensing | 2013

Mapping soil water content under sparse vegetation and changeable sky conditions: comparison of two thermal inertia approaches

Antonino Maltese; Fulvio Capodici; Giuseppe Ciraolo; Goffredo La Loggia

{\varepsilon}


Journal of Hydraulic Research | 2014

Storm sewer pressurization transient – an experimental investigation

Giovanni Battista Ferreri; Giuseppe Ciraolo; Carlo Lo Re


Remote Sensing | 2010

A thermal inertia model for soil water content retrieval using thermal and multispectral images

Antonino Maltese; Mario Minacapilli; Carmelo Cammalleri; Giuseppe Ciraolo; F. D'Asaro

turbulence model for the Reynolds stresses. The numerical analysis allows to identify the relative contribution of the forces affecting the hydrodynamic circulation inside the lagoon. In the simulations only wind and tide forces are considered, neglecting the effects of water density changes. Two different conditions are considered. In the first both the wind stress over the free-surface and the tidal motion are imposed. In the second the wind action is neglected, to separately analyze the tide-induced circulation. The comparison between the two test cases highlights the fundamental role of the wind on the hydrodynamics of the Stagnone lagoon, producing a strong vertical recirculation pattern that is not observed when the flow is driven by tides only.


Remote Sensing for Agriculture, Ecosystems, and Hydrology XIV | 2012

Critical analysis of the thermal inertia approach to map soil water content under sparse vegetation and changeable sky conditions

Antonino Maltese; Fulvio Capodici; Chiara Corbari; Giuseppe Ciraolo; Goffredo La Loggia; José A. Sobrino

Environmental monitoring plays a central role in diagnosing climate and management impacts on natural and agricultural systems; enhancing the understanding of hydrological processes; optimizing the allocation and distribution of water resources; and assessing, forecasting, and even preventing natural disasters. Nowadays, most monitoring and data collection systems are based upon a combination of ground-based measurements, manned airborne sensors, and satellite observations. These data are utilized in describing both small- and large-scale processes, but have spatiotemporal constraints inherent to each respective collection system. Bridging the unique spatial and temporal divides that limit current monitoring platforms is key to improving our understanding of environmental systems. In this context, Unmanned Aerial Systems (UAS) have considerable potential to radically improve environmental monitoring. UAS-mounted sensors offer an extraordinary opportunity to bridge the existing gap between field observations and traditional air- and space-borne remote sensing, by providing high spatial detail over relatively large areas in a cost-effective way and an entirely new capacity for enhanced temporal retrieval. As well as showcasing recent advances in the field, there is also a need to identify and understand the potential limitations of UAS technology. For these platforms to reach their monitoring potential, a wide spectrum of unresolved issues and application-specific challenges require focused community attention. Indeed, to leverage the full potential of UAS-based approaches, sensing technologies, measurement protocols, postprocessing techniques, retrieval algorithms, and evaluation techniques need to be harmonized. The aim of this paper is to provide an overview of the existing research and applications of UAS in natural and agricultural ecosystem monitoring in order to identify future directions, applications, developments, and challenges.

Collaboration


Dive into the Giuseppe Ciraolo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guido D'Urso

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge