Antonio Agostini
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonio Agostini.
Genes, Chromosomes and Cancer | 2016
Francesca Micci; Ludmila Gorunova; Antonio Agostini; Lene E. Johannessen; Marta Brunetti; Ben Davidson; Sverre Heim; Ioannis Panagopoulos
Recent cytogenetic and molecular investigations have improved our understanding of endometrial stromal tumors, including sarcomas (ESS), and helped redefine their classification into more pathogenetically meaningful categories. Because much more can be gained through such studies, we add information on another 22 ESS examined by karyotyping, PCR analysis, expression array analysis, and transcriptome sequencing. In spite of the known preference for certain pathogenetic pathways, we found considerable genetic heterogeneity in high‐grade (HG) as well as in low‐grade (LG) ESS. Not all HG tumors showed a YWHAE‐NUTM chimeric transcript and as many as six LGESS showed no hitherto known ESS‐related fusions. Among the transcripts identified by transcriptome sequencing and verified by Sanger sequencing, new variants of ZC3H7‐BCOR and its reciprocal BCOR‐ZC3H7 were identified as was involvement of the CREBBP and MLLT4 genes (both well known leukemia‐related genes) in two new fusions. FISH analysis identified a known EPC1‐PHF1 fusion which led to the identification of a new variant at the molecular level. The fact that around 70 genes were found differentially expressed, by microarray analysis, when comparing LGESS showing ESS‐related fusions with LGESS without such transcripts, underscores the biochemical importance of the observed genetic heterogeneity and hints that new subgroups/entities in LGESS still remain undiscovered.
Oncotarget | 2017
Antonio Agostini; Marta Brunetti; Ben Davidson; Claes G. Tropé; Sverre Heim; Ioannis Panagopoulos; Francesca Micci
The High-mobility group AT-hook 2 protein (HMGA2) is involved in different processes during tumorigenesis. High expression levels of HMGA2 are found in various types of cancer, with recent studies highlighting the important role of miRNAs in the regulation of HMGA2 expression. We report a study of 155 ovarian tumors (30 sex-cord stromal tumors, 22 borderline tumors, and 103 carcinomas) analyzed for HMGA2 expression as well as the expression of two miRNAs targeting this gene, let-7a and miR-30c. We also evaluated the expression of the fragile histidine triad (FHIT) and lin28 homologues (LIN28A/B) genes which are known to be an enhancer of miR-30c expression and a repressor of let-7a, respectively. HMGA2 was found expressed at high levels in most samples analyzed, with clear cell carcinomas as the only exception. let-7a and miR-30c were highly deregulated in all tumor types. LIN28A and FHIT were found overexpressed in all examined tumor types. The chromosomal imbalances that might lead to loss of the genes expressing let-7a and miR-30c could be evaluated on the basis of previously generated karyotypic and high resolution comparative genomic hybridization (CGH) data on 103 tumors. 76% of the samples with an imbalanced genome had at least one chromosomal aberration leading to a deletion of a miRNA cluster for let-7a and miR-30c. FISH using locus specific probes for these clusters validate the aberrations at the gene level. Our study shows that genomic imbalances are involved in miR-30c and let-7a deregulation. One can reasonably assume that dysregulation of these miRNAs is a cause leading to HMGA2 upregulation in ovarian tumors.
BMC Cancer | 2017
Marianne Lislerud Smebye; Antonio Agostini; Bjarne Johannessen; Jim Thorsen; Ben Davidson; Claes G. Tropé; Sverre Heim; Rolf I. Skotheim; Francesca Micci
BackgroundA fusion gene is a hybrid gene consisting of parts from two previously independent genes. Chromosomal rearrangements leading to gene breakage are frequent in high-grade serous ovarian carcinomas and have been reported as a common mechanism for inactivating tumor suppressor genes. However, no fusion genes have been repeatedly reported to be recurrent driver events in ovarian carcinogenesis. We combined genomic and transcriptomic information to identify novel fusion gene candidates and aberrantly expressed genes in ovarian carcinomas.MethodsExamined were 19 previously karyotyped ovarian carcinomas (18 of the serous histotype and one undifferentiated). First, karyotypic aberrations were compared to fusion gene candidates identified by RNA sequencing (RNA-seq). In addition, we used exon-level gene expression microarrays as a screening tool to identify aberrantly expressed genes possibly involved in gene fusion events, and compared the findings to the RNA-seq data.ResultsWe found a DPP9-PPP6R3 fusion transcript in one tumor showing a matching genomic 11;19-translocation. Another tumor had a rearrangement of DPP9 with PLIN3. Both rearrangements were associated with diminished expression of the 3′ end of DPP9 corresponding to the breakpoints identified by RNA-seq. For the exon-level expression analysis, candidate fusion partner genes were ranked according to deviating expression compared to the median of the sample set. The results were collated with data obtained from the RNA-seq analysis. Several fusion candidates were identified, among them TMEM123-MMP27, ZBTB46-WFDC13, and PLXNB1-PRKAR2A, all of which led to stronger expression of the 3′ genes. In view of our previous findings of nonrandom rearrangements of chromosome 19 in this cancer type, particular emphasis was given to changes of this chromosome and a DDA1-FAM129C fusion event was identified.ConclusionsWe have identified novel fusion gene candidates in high-grade serous ovarian carcinoma. DPP9 was involved in two different fusion transcripts that both resulted in deregulated expression of the 3′ end of the transcript and thus possible loss of the active domains in the DPP9 protein. The identified rearrangements might play a role in tumorigenesis or tumor progression.
Oncotarget | 2016
Antonio Agostini; Marta Brunetti; Ben Davidson; Claes G. Tropé; Sverre Heim; Ioannis Panagopoulos; Francesca Micci
Malignant tumors of the vulva, most of them squamous cell carcinomas, account for only 5% of cancers of the female genital tract. Though little is known about the genetic features of these tumors, the Fragile Histidine Triad (FHIT) and High Mobility Group AT-hook 2 (HMGA2) genes were found deregulated. We wanted to gain more knowledge about the expression of HMGA2-related miRNAs such as miR-30c and let-7a, and whether a correlation exists between the expression of FHIT and HMGA2, in this tumor type. An inverse correlation was found in-as-much as HMGA2 was highly expressed (mean fold change 8.8) whereas miR30c and let-7a were both downregulated (mean fold change -3.9 and -2.3, respectively). The consistent overexpression of HMGA2 found in all tumors adds to the likelihood that this gene is of importance in SCC pathogenesis. Moreover, we came to the conclusion that miRNAs may be the cause of the deregulation of HMGA2. Our results also show that SCC of the vulva presents a characteristic molecular pattern with FHIT being downregulated whereas HMGA2 is upregulated.
Oncology Reports | 2015
Antonio Agostini; Ioannis Panagopoulos; Hege Kilen Andersen; Lene Elisabeth Johannesen; Ben Davidson; Claes G. Tropé; Sverre Heim; Francesca Micci
Malignant tumors of the vulva account for only 5% of cancers of the female genital tract in the USA. The most frequent cancers of the vulva are squamous cell carcinoma (SCC) and malignant melanoma (MM). Little is known about the genetic aberrations carried by these tumors. We report a detailed study of 25 vulva tumors [22 SCC, 2 MM, 1 atypical squamous cell hyperplasia (AH)] analyzed for expression of the high-mobility group AT-hook family member genes HMGA2 and HMGA1, for mutations in the IDH1, IDH2 and TERT genes, and for methylation of the MGMT promoter. The RT-PCR and immunohistochemistry analyses showed that HMGA2 was expressed in the great majority of analyzed samples (20 out of 24; SCC as well as MM) but not in the normal controls. HMGA1, on the other hand, was expressed in both tumors and normal tissues. Five of the 24 tumors (all SCC) showed the C228T mutation in the TERT promoter. Our results showed that HMGA2 and TERT may be of importance in the genesis and/or the progression of tumors of the vulva.
Oncotarget | 2017
Ioannis Panagopoulos; Ludmila Gorunova; Marta Brunetti; Antonio Agostini; Hege Kilen Andersen; Ingvild Lobmaier; Bodil Bjerkehagen; Sverre Heim
Leiomyoma of deep soft tissue is a rare type of benign smooth muscle tumor that mostly occurs in the retroperitoneum or abdominal cavity of women, and about which very little genetic information exists. In the present study, eight leiomyomas of deep soft tissue were genetically analyzed. G-banding showed that three tumors carried rearrangements of the long arm of chromosome 12, three others had 8q rearrangements, the 7th tumor had deletion of the long arm of chromosome 7, del(7)(q22), and the 8th had aberrations of chromosome bands 3q21∼23 and 11q21∼22. The target genes of the 12q and 8q aberrations were HMGA2 and PLAG1, respectively. In the leiomyomas with 12q rearrangements, both HMGA2 and PLAG1 were expressed whereas in the tumors with 8q aberrations, only PLAG1 was expressed. In the cases without 12q or 8q aberrations, the expression of HMGA2 was very low and PLAG1 was expressed only in the case with del(7)(q22). All eight leiomyomas of deep soft tissue expressed MED12 but none of them had mutation in exon 2 of that gene. In two tumors with 12q rearrangements, RPSAP52 on 12q14.3 was fused with non-coding RNA (accession number XR_944195) from 14q32.2 or ZFP36L1 from14q24.1. In a tumor with inv(12), exon 3 of HMGA2 was fused to a sequence in intron 1 of the CRADD gene from 12q22. The present data together with those of our two previous studies in which the fusions KAT6B-KANSL1 and EWSR1-PBX3 were described in two retroperitoneal leiomyomas carrying a t(10;17)(q22;q21) and a t(9;22)(q33;q12) translocation, respectively, show that leiomyomas of deep soft tissue are genetically heterogenous but have marked similarities to uterine leiomyomas.
Diagnostic Pathology | 2016
Ioannis Panagopoulos; Ludmila Gorunova; Antonio Agostini; Ingvild Lobmaier; Bodil Bjerkehagen; Sverre Heim
BackgroundMyolipoma of soft tissue is an extremely rare benign tumor composed of mature adipose tissue and smooth muscle cells. It is found predominantly in women. The cytogenetic and molecular genetic features of myolipomas remain largely unexplored. Here we present the first cytogenetically analyzed myolipoma.MethodsCytogenetic and molecular genetic analyses were done on a myolipoma.ResultsG-banding analysis of short-term cultured cells from the myolipoma yielded a karyotype with a single clonal chromosome abnormality: 46,XX,t(9;12)(p22;q14). Fluorescence in situ hybridization experiments demonstrated that HMGA2 (in 12q14) was rearranged. Molecular genetic analysis showed that the translocation resulted in fusion of HMGA2 with the C9orf92 gene (from 9p22). The HMGA2-C9orf92 fusion transcript would code for a putative protein containing amino acid residues 1–94 of HMGA2 and 6 amino acid residues from the out-of-frame fusion with exon 4 of C9orf92.ConclusionThe pattern of HMGA2 rearrangement in the present case of myolipoma is similar to what is found in other benign connective tissue tumor types, including lipomas, i.e., disruption of the HMGA2 locus leaves intact exons which encode the AT-hook domains but separates them from the 3´-terminal part of the gene. Whether any genetic features differentiate myolipomas from regular lipomas with HMGA2-involvement is a question that cannot be answered until more cases of the former tumor type are subjected to genetic analysis.
Scientific Reports | 2018
Antonio Agostini; Marta Brunetti; Ben Davidson; Claes G. Tropé; Ane Gerda Z. Eriksson; Sverre Heim; Ioannis Panagopoulos; Francesca Micci
Different microRNAs are dysregulated in ovarian cancer where some of them have proved to be valid biomarkers. miRNA profiling analyses have shown that the different histotypes of ovarian carcinoma display differential expression of specific miRNAs. In the present study, we used miRNA-sequencing and Real-Time qPCR to detect the expression levels of miRNAs belonging to the miRNA-192/215 family, namely miR-192, miR-194, and miR-215, in different types of ovarian neoplasia, finding that miR-192, miR-194, and miR-215 were upregulated in ovarian carcinomas of the mucinous subtype, but downregulated in other types of carcinoma and in sex cord-stromal tumors. The expression of the said miRNAs was 6-fold higher in mucinous tumors compared to the other histotypes making them candidates for a possible role as diagnostic biomarkers.
International Journal of Cancer | 2018
Antonio Agostini; Marta Brunetti; Ben Davidson; Claes G. Tropé; Sverre Heim; Ioannis Panagopoulos; Francesca Micci
Formation of fusion genes is pathogenetically crucial in many solid tumors. They are particularly characteristic of several mesenchymal tumors, but may also be found in epithelial neoplasms. Ovarian carcinomas, too, may harbor fusion genes but only few of these were found to be recurrent with a rate ranging from 0.5 to 5%. Because most attempts to find specific and recurrent fusion transcripts in ovarian carcinomas focused exclusively on high‐grade serous carcinomas, the situation in the other carcinoma subgroups remains largely uninvestigated as far as fusion genes are concerned. We performed transcriptome sequencing on a series of 34 samples from ovarian tumors that included borderline, clear cell, mucinous, endometrioid, low‐grade and high‐grade serous carcinomas in search of fusion genes typical of these subtypes. We found a total of 24 novel fusion transcripts. The PCMTDI‐CCNL2 fusion transcript, which involves a member of the cyclin family, was found recurrently involved but only in endometrioid carcinomas (4 of 18 tumors; 22%). We also found three additional fusion transcripts involving genes belonging to the cyclin family: ANXA5‐CCNA2 and PDE4D‐CCNB1 were detected in two endometrioid carcinomas, whereas CCNY‐NRG4 was identified in a clear cell carcinoma. The recurrent involvement of CCNL2 in four fusions and of three other genes of the cyclin family in three additional transcripts hints that deregulation of cyclin genes is important in the pathogenesis of ovarian carcinomas in general but of endometrioid carcinomas particularly.
Oncotarget | 2017
Marta Brunetti; Antonio Agostini; Ben Davidson; Claes G. Tropé; Sverre Heim; Ioannis Panagopoulos; Francesca Micci
Juxtaposition of two different genes or gene parts due to chromosomal rearrangement is a well-known neoplasia-associated pathogenetic mechanism. The detection and characterization of such tumorigenic fusions is of great importance both research-wise, diagnostically because they may be specific for distinct tumor entities, and because they may serve as therapeutic targets for antioncogenic drugs that interact directly with the molecular changes responsible for neoplastic transformation. At present, more than 10,000 fusion transcripts have been reported in different types of neoplasia, with one tenth of them being identified in squamous cell carcinomas (SCC) of different locations. No recurrent fusion gene has to date been identified in SCC of the vulva. We performed high-throughput paired-end RNA-sequencing of 12 vulvar SCC and found two recurrent fusions with the STIP1-CREB3L1 and ZDHHC5-GPR137 being present in two tumors each. The transcripts were detected only in the tumor samples, not in normal vulvar tissue from healthy donors used as control. The CREB3L1 and ZDHHC5 genes encode proteins involved in transcription suggesting that the chimeras may alter downstream events in their respective pathways. Expression analysis of the CREB3L1 gene showed the presence of two distinct groups of tumors, one having fusion and downregulation of the gene and the other showing upregulation of CREB3L1.