Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio Bicchi is active.

Publication


Featured researches published by Antonio Bicchi.


international conference on robotics and automation | 2000

Robotic grasping and contact: a review

Antonio Bicchi; Vijay Kumar

In this paper, we survey the field of robotic grasping and the work that has been done in this area over the last two decades, with a slight bias toward the development of the theoretical framework and analytical results in this area.


IEEE Robotics & Automation Magazine | 2004

Fast and "soft-arm" tactics [robot arm design]

Antonio Bicchi; Giovanni Tonietti

This article considered the problem of designing joint-actuation mechanisms that can allow fast and accurate operation of a robot arm, while guaranteeing a suitably limited level of injury risk. Different approaches to the problem were presented, and a method of performance evaluation was proposed based on minimum-time optimal control with safety constraints. The variable stiffness transmission (VST) scheme was found to be one of a few different possible schemes that allows the most flexibility and potential performance. Some aspects related to the implementation of the mechanics and control of VST actuation were also reported.


The International Journal of Robotics Research | 1995

On the closure properties of robotic grasping

Antonio Bicchi

The form-closure and force-closure properties of robotic grasp ing are investigated. Loosely speaking, these properties are related to the capability of the robot to inhibit motions of the workpiece in spite of externally applied forces. In this article, form-closure is considered as a purely geometric property of a set of unilateral (contact) constraints, such as those applied on a workpiece by a mechanical fixture, while force-closure is related to the capability of the particular robotic device being considered to apply forces through contacts. The concepts of partial form- and force-closure properties are introduced and discussed, and an algorithm is proposed to obtain a synthetic geometric description of partial form-closure constraints. Al though the literature abounds with form-closure tests, proposed algorithms for testing force-closure are either approximate or computationally expensive. This article proves the equiva lence of force-closure analysis with the study of the equilibria of an ordinary differential equation, to which Lyapunovs di rect method is applied. This observation leads to an efficient algorithm for assessing the force-closure property of the grasp.


international conference on robotics and automation | 2005

Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction

Giovanni Tonietti; Riccardo Schiavi; Antonio Bicchi

This paper is concerned with the design and control of actuators for machines and robots physically interacting with humans, implementing criteria established in our previous work [1] on optimal mechanical-control co-design for intrinsically safe, yet performant machines. In our Variable Impedance Actuation (VIA) approach, actuators control in real-time both the reference position and the mechanical impedance of the moving parts in the machine in such a way to optimize performance while intrinsically guaranteeing safety. In this paper we describe an implementation of such concepts, consisting of a novel electromechanical Variable Stiffness Actuation (VSA) motor. The design and the functioning principle of the VSA are reported, along with the analysis of its dynamic behavior. A novel scheme for feedback control of this device is presented, along with experimental results showing performance and safety of a one-link arm actuated by the VSA motor.


Robotics and Autonomous Systems | 2013

Variable impedance actuators: A review

Bram Vanderborght; Alin Albu-Schaeffer; Antonio Bicchi; Etienne Burdet; Darwin G. Caldwell; Raffaella Carloni; Manuel G. Catalano; Oliver Eiberger; Werner Friedl; Gowrishankar Ganesh; Manolo Garabini; Markus Grebenstein; Giorgio Grioli; Sami Haddadin; Hannes Höppner; Amir Jafari; Matteo Laffranchi; Dirk Lefeber; Florian Petit; Stefano Stramigioli; Nikos G. Tsagarakis; M. Van Damme; R. Van Ham; Ludo C. Visser; Sebastian Wolf

Variable Impedance Actuators (VIA) have received increasing attention in recent years as many novel applications involving interactions with an unknown and dynamic environment including humans require actuators with dynamics that are not well-achieved by classical stiff actuators. This paper presents an overview of the different VIAs developed and proposes a classification based on the principles through which the variable stiffness and damping are achieved. The main classes are active impedance by control, inherent compliance and damping actuators, inertial actuators, and combinations of them, which are then further divided into subclasses. This classification allows for designers of new devices to orientate and take inspiration and users of VIAs to be guided in the design and implementation process for their targeted application.


IEEE Robotics & Automation Magazine | 2007

Symbolic planning and control of robot motion [Grand Challenges of Robotics]

Calin Belta; Antonio Bicchi; Magnus Egerstedt; Emilio Frazzoli; Eric Klavins; George J. Pappas

In this paper, different research trends that use symbolic techniques for robot motion planning and control are illustrated. As it often happens in new research areas, contributions to this topic started at about the same time by different groups with different emphasis, approaches, and notation. This article tries to describe a framework in which many of the current methods and ideas can be placed and to provide a coherent picture of what the authors want to do, what have they got so far, and what the main missing pieces are. Generally speaking, the aim of symbolic control as is envisioned in this article is to enable the usage of methods of formal logic, languages, and automata theory for solving effectively complex planning problems for robots and teams of robots. The results presented in this article can be divided in two groups: top-down approaches, whereby formal logic tools are employed on rather abstract models of robots; and bottom up approaches, whose aim is to provide means by which such abstractions are possible and effective. The two ends do not quite tie as yet, and much work remains to be done in both directions to obtain generally applicable methods. However, the prospects of symbolic control of robots are definitely promising, and the challenging nature of problems to be solved warrants for the interest of a wide community of researchers


international conference on robotics and automation | 2008

VSA-II: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans

Riccardo Schiavi; Giorgio Grioli; Soumen Sen; Antonio Bicchi

This paper presents design and performance of a novel joint based actuator for a robot run by variable stiffness actuation, meant for systems physically interacting with humans. This new actuator prototype (VSA-II) is developed as an improvement over our previously developed one reported in [9], where an optimal mechanical-control co-design principle established in [7] is followed as well. While the first version was built in a way to demonstrate effectiveness of variable impedance actuation (VIA), it had limitations in torque capacities, life cycle and implementability in a real robot. VSA-II overcomes the problem of implementability with higher capacities and robustness in design for longer life. The paper discusses design and stiffness behaviour of VSA-II in theory and experiments. A comparison of stiffness characteristics between the two actuator is discussed, highlighting the advantages of the new design. A simple, but effective PD scheme is employed to independently control joint-stiffness and joint-position of a 1-link arm. Finally, results from performed impact tests of 1- link arm are reported, showing the effectiveness of stiffness variation in controlling value of a safety metric.


IEEE Transactions on Automatic Control | 2012

Consensus Computation in Unreliable Networks: A System Theoretic Approach

Fabio Pasqualetti; Antonio Bicchi; Francesco Bullo

This paper addresses the problem of ensuring trustworthy computation in a linear consensus network. A solution to this problem is relevant for several tasks in multi-agent systems including motion coordination, clock synchronization, and cooperative estimation. In a linear consensus network, we allow for the presence of misbehaving agents, whose behavior deviate from the nominal consensus evolution. We model misbehaviors as unknown and unmeasurable inputs affecting the network, and we cast the misbehavior detection and identification problem into an unknown-input system theoretic framework. We consider two extreme cases of misbehaving agents, namely faulty (non-colluding) and malicious (Byzantine) agents. First, we characterize the set of inputs that allow misbehaving agents to affect the consensus network while remaining undetected and/or unidentified from certain observing agents. Second, we provide worst-case bounds for the number of concurrent faulty or malicious agents that can be detected and identified. Precisely, the consensus network needs to be 2k+1 (resp. k+1) connected for k malicious (resp. faulty) agents to be generically detectable and identifiable by every well behaving agent. Third, we quantify the effect of undetectable inputs on the final consensus value. Fourth, we design three algorithms to detect and identify misbehaving agents. The first and the second algorithm apply fault detection techniques, and affords complete detection and identification if global knowledge of the network is available to each agent, at a high computational cost. The third algorithm is designed to exploit the presence in the network of weakly interconnected subparts, and provides local detection and identification of misbehaving agents whose behavior deviates more than a threshold, which is quantified in terms of the interconnection structure.


IEEE Transactions on Intelligent Transportation Systems | 2000

On optimal cooperative conflict resolution for air traffic management systems

Antonio Bicchi; Lucia Pallottino

We consider optimal resolution of air traffic (AT) conflicts. Aircraft are assumed to cruise within a given altitude layer and are modeled as a kinematic system with constant velocity and curvature bounds. Aircraft cannot get closer to each other than a predefined safety distance. For such a system of multiple aircraft, we consider the problem of planning optimal paths among given waypoints. Necessary conditions for optimality of solutions are derived and used to devise a parametrization of possible trajectories that turns into efficient numerical solutions to the problem. Simulation results for a realistic aircraft conflict scenario are provided. A decentralized implementation of the optimal conflict resolution scheme is introduced that may allow free-flight coordination in a cooperative airspace management scheme. Impact of decentralization on performance and safety is finally discussed with the help of extensive simulations.


IEEE Transactions on Robotics | 2007

Decentralized Cooperative Policy for Conflict Resolution in Multivehicle Systems

Lucia Pallottino; Vincenzo Giovanni Scordio; Antonio Bicchi; Emilio Frazzoli

In this paper, we propose a novel policy for steering multiple vehicles between assigned start and goal configurations, ensuring collision avoidance. The policy rests on the assumption that all agents are cooperating by implementing the same traffic rules. However, the policy is completely decentralized, as each agent decides its own motion by applying those rules only on the locally available information, and scalable, in the sense that the amount of information processed by each agent and the computational complexity of the algorithms do not increase with the number of agents in the scenario. The proposed policy applies to systems in which new vehicles may enter the scene and start interacting with existing ones at any time, while others may leave. Under mild conditions on the initial configurations, the policy is shown to be safe, i.e., it guarantees collision avoidance throughout the system evolution. In the paper, conditions are discussed on the desired configurations of agents, under which the ultimate convergence of all vehicles to their goals can also be guaranteed. To show that such conditions are actually necessary and sufficient, which turns out to be a challenging liveness-verification problem for a complex hybrid automaton, we employ a probabilistic verification method. The paper finally presents and discusses simulations for systems of several tens of vehicles, and reports on some experimental implementation showing the practicality of the approach.

Collaboration


Dive into the Antonio Bicchi's collaboration.

Top Co-Authors

Avatar

Manuel G. Catalano

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Giorgio Grioli

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arash Ajoudani

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge