Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuel G. Catalano is active.

Publication


Featured researches published by Manuel G. Catalano.


Robotics and Autonomous Systems | 2013

Variable impedance actuators: A review

Bram Vanderborght; Alin Albu-Schaeffer; Antonio Bicchi; Etienne Burdet; Darwin G. Caldwell; Raffaella Carloni; Manuel G. Catalano; Oliver Eiberger; Werner Friedl; Gowrishankar Ganesh; Manolo Garabini; Markus Grebenstein; Giorgio Grioli; Sami Haddadin; Hannes Höppner; Amir Jafari; Matteo Laffranchi; Dirk Lefeber; Florian Petit; Stefano Stramigioli; Nikos G. Tsagarakis; M. Van Damme; R. Van Ham; Ludo C. Visser; Sebastian Wolf

Variable Impedance Actuators (VIA) have received increasing attention in recent years as many novel applications involving interactions with an unknown and dynamic environment including humans require actuators with dynamics that are not well-achieved by classical stiff actuators. This paper presents an overview of the different VIAs developed and proposes a classification based on the principles through which the variable stiffness and damping are achieved. The main classes are active impedance by control, inherent compliance and damping actuators, inertial actuators, and combinations of them, which are then further divided into subclasses. This classification allows for designers of new devices to orientate and take inspiration and users of VIAs to be guided in the design and implementation process for their targeted application.


The International Journal of Robotics Research | 2014

Adaptive synergies for the design and control of the Pisa/IIT SoftHand

Manuel G. Catalano; Giorgio Grioli; Edoardo Farnioli; Alessandro Serio; Cristina Piazza; Antonio Bicchi

In this paper we introduce the Pisa/IIT SoftHand, a novel robot hand prototype designed with the purpose of being robust and easy to control as an industrial gripper, while exhibiting high grasping versatility and an aspect similar to that of the human hand. In the paper we briefly review the main theoretical tools used to enable such simplification, i.e. the neuroscience-based notion of soft synergies. A discussion of several possible actuation schemes shows that a straightforward implementation of the soft synergy idea in an effective design is not trivial. The approach proposed in this paper, called adaptive synergy, rests on ideas coming from underactuated hand design. A synthesis method to realize a desired set of soft synergies through the principled design of adaptive synergy is discussed. This approach leads to the design of hands accommodating in principle an arbitrary number of soft synergies, as demonstrated in grasping and manipulation simulations and experiments with a prototype. As a particular instance of application of the synthesis method of adaptive synergies, the Pisa/IIT SoftHand is described in detail. The hand has 19 joints, but only uses 1 actuator to activate its adaptive synergy. Of particular relevance in its design is the very soft and safe, yet powerful and extremely robust structure, obtained through the use of innovative articulations and ligaments replacing conventional joint design. The design and implementation of the prototype hand are shown and its effectiveness demonstrated through grasping experiments, reported also in multimedia extension.


international conference on robotics and automation | 2011

VSA-CubeBot: A modular variable stiffness platform for multiple degrees of freedom robots

Manuel G. Catalano; Giorgio Grioli; Manolo Garabini; Fabio Bonomo; Michele Mancini; Nikolaos G. Tsagarakis; Antonio Bicchi

We propose a prototype of a Variable Stiffness Actuator (VSA) conceived with low cost as its first goal. This approach was scarcely covered in past literature. Many recent works introduced a large number of actuators with adjustable stiffness, optimized for a wide set of applications. They cover a broad range of design possibilities, but their availability is still limited to small quantities. This work presents the design and implementation of a modular servo-VSA multi-unit system, called VSA-CubeBot. It offers a customizable platform for the realization and test of variable stiffness robotic structures with many degrees of freedom. We present solutions relative to the variable stiffness mechanism, embedded electronics, mechanical and electrical interconnections. Characteristics, both theoretic and experimental, of the single actuator are reported and, finally, five units are interconnected to form a single arm, to give an example of the many possible applications of this modular VSA actuation unit.


ieee-ras international conference on humanoid robots | 2012

Adaptive synergies for a humanoid robot hand

Manuel G. Catalano; Giorgio Grioli; Alessandro Serio; Edoardo Farnioli; Cristina Piazza; Antonio Bicchi

One of the motivations behind the development of humanoid robots is the will to comply with, and fruitfully integrate in the human environment, a world forged by humans for humans, where the importance of the hand shape dominates prominently. This paper presents the novel hand under-actuation framework which goes under the name of synergies. In particular two incarnations of this concept are considered, soft synergies and adaptive synergies. They are presented and their substantial equivalence is demonstrated. After this, it presents the first implementation of THE UNIPI-hand, a prototype which conciliates the idea of adaptive synergies for actuation with an high degree of integration, in a humanoid shape. The hand is validated experimentally through some grasps and measurements. Results are reported also in the attached video.


intelligent robots and systems | 2012

Adaptive synergies: An approach to the design of under-actuated robotic hands

Giorgio Grioli; Manuel G. Catalano; Emanuele Silvestro; Simone Tono; Antonio Bicchi

To match the richness and complexity of the sensory and motor functionalities of a human hand with a robust and economically reasonable robotic device remains one of the hardest challenges in the field. Previous work has explored the possibility to exploit insight from neuroscientific results on postural correlation patterns (synergies) taming the sensorimotor complexity of hands. The postural synergy model has been recently extended to account for grasp force control through a model of “soft synergies” which incorporate hand compliance. In this paper we propose a first translation of such principles in the design of a robot hand. It so turns out that the implementation of the soft synergy model in an effective design is not obvious. The solution proposed in this paper rests on ideas coming from under-actuated hand design. We give a synthesis method to realize a desired set of soft synergies through the principled design of adaptive under-actuated mechanisms, which we call the method of adaptive synergies. This approach leads to the design and implementation of a prototype modular hand capable of accommodating an arbitrary number of synergies. The effectiveness of the design is shown in grasping simulations and experiments.


The International Journal of Robotics Research | 2015

Variable stiffness actuators: The user's point of view

Giorgio Grioli; Sebastian Wolf; Manolo Garabini; Manuel G. Catalano; Etienne Burdet; Darwin G. Caldwell; Raffaella Carloni; Werner Friedl; Markus Grebenstein; Matteo Laffranchi; Dirk Lefeber; Stefano Stramigioli; Nikos G. Tsagarakis; Michaël Van Damme; Bram Vanderborght; Alin Albu-Schaeffer; Antonio Bicchi

Since their introduction in the early years of this century, variable stiffness actuators (VSA) witnessed a sustained growth of interest in the research community, as shown by the growing number of publications. While many consider VSA very interesting for applications, one of the factors hindering their further diffusion is the relatively new conceptual structure of this technology. When choosing a VSA for their application, educated practitioners, who are used to choosing robot actuators based on standardized procedures and uniformly presented data, would be confronted with an inhomogeneous and rather disorganized mass of information coming mostly from scientific publications. In this paper, the authors consider how the design procedures and data presentation of a generic VSA could be organized so as to minimize the engineer’s effort in choosing the actuator type and size that would best fit the application needs. The reader is led through the list of the most important parameters that will determine the ultimate performance of their VSA robot, and influence both the mechanical design and the controller shape. This set of parameters extends the description of a traditional electric actuator with quantities describing the capability of the VSA to change its output stiffness. As an instrument for the end-user, the VSA datasheet is intended to be a compact, self-contained description of an actuator that summarizes all of the salient characteristics that the user must be aware of when choosing a device for their application. At the end some examples of compiled VSA datasheets are reported, as well as a few examples of actuator selection procedures.


IEEE Transactions on Haptics | 2014

Exploring Teleimpedance and Tactile Feedback for Intuitive Control of the Pisa/IIT SoftHand

Arash Ajoudani; Sasha B. Godfrey; Matteo Bianchi; Manuel G. Catalano; Giorgio Grioli; Nikos G. Tsagarakis; Antonio Bicchi

This paper proposes a teleimpedance controller with tactile feedback for more intuitive control of the Pisa/IIT SoftHand. With the aim to realize a robust, efficient and low-cost hand prosthesis design, the SoftHand is developed based on the motor control principle of synergies, through which the immense complexity of the hand is simplified into distinct motor patterns. Due to the built-in flexibility of the hand joints, as the SoftHand grasps, it follows a synergistic path while allowing grasping of objects of various shapes using only a single motor. The DC motor of the hand incorporates a novel teleimpedance control in which the users postural and stiffness synergy references are tracked in real-time. In addition, for intuitive control of the hand, two tactile interfaces are developed. The first interface (mechanotactile) exploits a disturbance observer which estimates the interaction forces in contact with the grasped object. Estimated interaction forces are then converted and applied to the upper arm of the user via a custom made pressure cuff. The second interface employs vibrotactile feedback based on surface irregularities and acceleration signals and is used to provide the user with information about the surface properties of the object as well as detection of object slippage while grasping. Grasp robustness and intuitiveness of hand control were evaluated in two sets of experiments. Results suggest that incorporating the aforementioned haptic feedback strategies, together with user-driven compliance of the hand, facilitate execution of safe and stable grasps, while suggesting that a low-cost, robust hand employing hardware-based synergies might be a good alternative to traditional myoelectric prostheses.


Journal of Field Robotics | 2017

WALK‐MAN: A High‐Performance Humanoid Platform for Realistic Environments

Nikos G. Tsagarakis; Darwin G. Caldwell; Francesca Negrello; Wooseok Choi; Lorenzo Baccelliere; V.G. Loc; J. Noorden; Luca Muratore; Alessio Margan; Alberto Cardellino; Lorenzo Natale; E. Mingo Hoffman; Houman Dallali; Navvab Kashiri; Jörn Malzahn; Jinoh Lee; Przemyslaw Kryczka; Dimitrios Kanoulas; Manolo Garabini; Manuel G. Catalano; Mirko Ferrati; V. Varricchio; Lucia Pallottino; Corrado Pavan; Antonio Bicchi; Alessandro Settimi; Alessio Rocchi; Arash Ajoudani

In this work, we present WALK-MAN, a humanoid platform that has been developed to operate in realistic unstructured environment, and demonstrate new skills including powerful manipulation, robust balanced locomotion, high-strength capabilities, and physical sturdiness. To enable these capabilities, WALK-MAN design and actuation are based on the most recent advancements of series elastic actuator drives with unique performance features that differentiate the robot from previous state-of-the-art compliant actuated robots. Physical interaction performance is benefited by both active and passive adaptation, thanks to WALK-MAN actuation that combines customized high-performance modules with tuned torque/velocity curves and transmission elasticity for high-speed adaptation response and motion reactions to disturbances. WALK-MAN design also includes innovative design optimization features that consider the selection of kinematic structure and the placement of the actuators with the body structure to maximize the robot performance. Physical robustness is ensured with the integration of elastic transmission, proprioceptive sensing, and control. The WALK-MAN hardware was designed and built in 11 months, and the prototype of the robot was ready four months before DARPA Robotics Challenge (DRC) Finals. The motion generation of WALK-MAN is based on the unified motion-generation framework of whole-body locomotion and manipulation (termed loco-manipulation). WALK-MAN is able to execute simple loco-manipulation behaviors synthesized by combining different primitives defining the behavior of the center of gravity, the motion of the hands, legs, and head, the body attitude and posture, and the constrained body parts such as joint limits and contacts. The motion-generation framework including the specific motion modules and software architecture is discussed in detail. A rich perception system allows the robot to perceive and generate 3D representations of the environment as well as detect contacts and sense physical interaction force and moments. The operator station that pilots use to control the robot provides a rich pilot interface with different control modes and a number of teleoperated or semiautonomous command features. The capability of the robot and the performance of the individual motion control and perception modules were validated during the DRC in which the robot was able to demonstrate exceptional physical resilience and execute some of the tasks during the competition.


IEEE-ASME Transactions on Mechatronics | 2016

Variable Stiffness Actuators: Review on Design and Components

Sebastian Wolf; Giorgio Grioli; Oliver Eiberger; Werner Friedl; Markus Grebenstein; Hannes Höppner; Etienne Burdet; Darwin G. Caldwell; Raffaella Carloni; Manuel G. Catalano; Dirk Lefeber; Stefano Stramigioli; Nikos G. Tsagarakis; Michaël Van Damme; Ronald Van Ham; Bram Vanderborght; Ludo C. Visser; Antonio Bicchi; Alin Albu-Schäffer

Variable stiffness actuators (VSAs) are complex mechatronic devices that are developed to build passively compliant, robust, and dexterous robots. Numerous different hardware designs have been developed in the past two decades to address various demands on their functionality. This review paper gives a guide to the design process from the analysis of the desired tasks identifying the relevant attributes and their influence on the selection of different components such as motors, sensors, and springs. The influence on the performance of different principles to generate the passive compliance and the variation of the stiffness are investigated. Furthermore, the design contradictions during the engineering process are explained in order to find the best suiting solution for the given purpose. With this in mind, the topics of output power, potential energy capacity, stiffness range, efficiency, and accuracy are discussed. Finally, the dependencies of control, models, sensor setup, and sensor quality are addressed.


intelligent robots and systems | 2012

Velvet fingers: A dexterous gripper with active surfaces

Vinicio Tincani; Manuel G. Catalano; Edoardo Farnioli; Manolo Garabini; Giorgio Grioli; Gualtiero Fantoni; Antonio Bicchi

Since the introduction of the first prototypes of robotic end-effectors showing manipulation capabilities, much research focused on the design and control of robot hand and grippers. While many studies focus on enhancing the sensing capabilities and motion agility, a less explored topic is the engineering of the surfaces that enable the hand to contact the object. In this paper we present the prototype of the Velvet Fingers smart gripper, a novel concept of end-effector combining the simple mechanics and control of under-actuated devices together with high manipulation possibilities, usually offered only by dexterous robotic hands. This enhancement is obtained thanks to active surfaces, i.e. engineered contact surfaces able to emulate different levels of friction and to apply tangential thrusts to the contacted object. Through the paper particular attention is dedicated to the mechanical implementation, sense drive and control electronics of the device; some analysis on the control algorithms are reported. Finally, the capabilities of the prototype are showed through preliminary grasps and manipulation experiments.

Collaboration


Dive into the Manuel G. Catalano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giorgio Grioli

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arash Ajoudani

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Darwin G. Caldwell

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikos G. Tsagarakis

Istituto Italiano di Tecnologia

View shared research outputs
Researchain Logo
Decentralizing Knowledge