Antonio Canals
University of Alicante
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonio Canals.
Analytica Chimica Acta | 2012
Lorena Vidal; Marja-Liisa Riekkola; Antonio Canals
In recent years, materials science has propelled to the research forefront. Ionic liquids with unique and fascinating properties have also left their footprints to the developments of materials science during the last years. In this review we highlight some of their recent advances and provide an overview at the current status of ionic liquid-modified materials applied in solid-phase extraction, liquid and gas chromatography and capillary electrochromatography with reference to recent applications. In addition, the potential of ionic liquids in the modification of capillary inner wall in capillary electrophoresis is demonstrated. The main target material modified with ionic liquids is silica, but polymers and monoliths have recently joined the studies. Although imidazolium is still clearly the most commonly used ionic liquid for the covalently modification of materials, the exploitation of pyridinium and phosphonium will most probably increase in the future.
Journal of Chromatography A | 2011
Iván P. Román; Alberto Chisvert; Antonio Canals
A sensitive analytical method to concentrate and determine extensively used UV filters in cosmetic products at (ultra)trace levels in water samples is presented. The method is based on a sample treatment using dispersive solid-phase extraction (dSPE) with laboratory-made chemisorbed oleic acid-coated cobalt ferrite (CoFe(2)O(4)@oleic acid) magnetic nanoparticles (MNPs) as optimized sorbent for the target analytes. The variables involved in dSPE were studied and optimized in terms of sensitivity, and the optimum conditions were: mass of sorbent, 100mg; donor phase volume, 75 mL; pH, 3; and sodium chloride concentration, 30% (w/v). After dSPE, the MNPs were eluted twice with 1.5 mL of hexane, and then the eluates were evaporated to dryness and reconstituted with 50 μL of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) for the injection into the gas chromatography-mass spectrometry (GC-MS). Under the optimized experimental conditions the method provided good levels of repeatability with relative standard deviations below 16% (n=5, at 100 ng L(-1) level). Limit of detection values ranged between 0.2 and 6.0 ng L(-1), due to the high enrichment factors achieved (i.e., 453-748). Finally, the proposed method was applied to the analysis of water samples of different origin (tap, river and sea). Recovery values showed that the matrices under consideration do not significantly affect the extraction process.
Talanta | 2009
Francisco Pena-Pereira; Isela Lavilla; Carlos Bendicho; Lorena Vidal; Antonio Canals
Room temperature ionic liquids can be considered as environmentally benign solvents with unique physicochemical properties. Ionic liquids can be used as extractant phases in SDME, being compatible with chromatographic systems. A single-drop microextraction method was developed for separation and preconcentration of mercury species (MeHg(+), EtHg(+), PhHg(+) and Hg(2+)), which relies on the formation of the corresponding dithizonates and microextraction of these neutral chelates onto a microdrop of an ionic liquid. Afterwards, the separation and determination were carried out by high-performance liquid chromatography with a photodiode array detector. Variables affecting the formation and extraction of mercury dithizonates were optimized. The optimum conditions found were: microextraction time, 20 min; stirring rate, 900 rpm; pH, 11; ionic liquid type, 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]); drop volume, 4 microL; and no sodium chloride addition. Limits of detection were between 1.0 and 22.8 microg L(-1) for the four species of mercury, while the repeatability of the method, expressed as relative standard deviation, was between 3.7 and 11.6% (n=8). The method was finally applied to the determination of mercury species in different water samples.
Journal of Chromatography A | 2009
Alberto Chisvert; Iván P. Román; Lorena Vidal; Antonio Canals
A simple and commercial readily-available approach that enables the direct use of ionic liquid (IL)-based single-drop microextraction (SDME) prior to gas chromatography (GC) is presented. The approach is based on thermal desorption (TD) of the analytes from the IL droplet to the GC system, by using a robust and commercially-available thermodesorption system. For this purpose, a two-glass-tube concentrically disposed system was designed. The inner tube is a laboratory-cut Pyrex tube (20mm length) that houses the ionic liquid droplet from the SDME process, and the outer tube is a commercially-available TD glass tube (187 mm length) commonly employed for stir-bar sorptive extractions (SBSE). In this way, the proposed device prevents IL from entering the GC system, as this could dirty the inlet or even block the column. The determination of 10 chlorobenzenes in water samples by GC coupled with mass spectrometric (MS) detection has been chosen as model analytical application, showing the feasibility of the proposed approach. The SDME process consists of a 5 microL droplet of 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) suspended in the headspace (HS) of a 10 mL stirred sample. After extracting for 37 min at room temperature, the IL droplet is directly placed into the small inner tube, which is placed into the TD tube. The whole device is placed inside the TD unit, where desorption of the analytes is performed at 240 degrees C for 5 min with a helium flow rate of 100 mL min(-1). The analytical figures of merit of the proposed IL-(HS)-SDME-TD-GC-MS approach are very suitable for the determination of chlorobenzenes at ultratrace levels, with relative standard deviation values ranging between 2% and 17%, and limits of detection ranging between 1 and 4 ng L(-1), showing the potential offered by the IL-based SDME process with GC.
Analytica Chimica Acta | 2009
Carol Cortada; Lorena Vidal; Raul Pastor; Noemi Santiago; Antonio Canals
A rapid and simple dispersive liquid-liquid microextraction (DLLME) has been developed to preconcentrate eighteen organochlorine pesticides (OCPs) from water samples prior to analysis by gas chromatography-mass spectrometry (GC-MS). The studied variables were extraction solvent type and volume, disperser solvent type and volume, aqueous sample volume and temperature. The optimum experimental conditions of the proposed DLLME method were: a mixture of 10 microL tetrachloroethylene (extraction solvent) and 1 mL acetone (disperser solvent) exposed for 30 s to 10 mL of the aqueous sample at room temperature (20 degrees C). Centrifugation of cloudy solution was carried out at 2300 rpm for 3 min to allow phases separation. Finally, 2 microL of extractant was recovered and injected into the GC-MS instrument. Under the optimum conditions, the enrichment factors ranged between 46 and 316. The calculated calibration curves gave a high-level linearity for all target analytes with correlation coefficients ranging between 0.9967 and 0.9999. The repeatability of the proposed method, expressed as relative standard deviation, varied between 5% and 15% (n=8), and the detection limits were in the range of 1-25 ng L(-1). The LOD values obtained are able to detect these OCPs in aqueous matrices as required by EPA methods 525.2 and 625. Analysis of spiked real water samples revealed that the matrix had no effect on extraction for river, surface and tap waters; however, urban wastewater sample shown a little effect for five out of eighteen analytes.
Analytica Chimica Acta | 2009
Carol Cortada; Lorena Vidal; Sergio Tejada; Alicia Romo; Antonio Canals
A rapid and simple single-drop microextraction method (SDME) has been used to preconcentrate eighteen organochlorine pesticides (OCPs) from water samples with a complex matrix. Exposing two microlitre toluene drop to an aqueous sample contaminated with OCPs proved an excellent preconcentration method prior to analysis by gas chromatography-mass spectrometry (GC-MS). A Plackett-Burman design was used for screening and a central composite design for optimizing the significant variables in order to evaluate several possibly influential and/or interacting factors. The studied variables were drop volume, aqueous sample volume, agitation speed, ionic strength and extraction time. The optimum experimental conditions of the proposed SDME method were: 2 microL toluene microdrop exposed for 37 min to 10 mL of the aqueous sample containing 0% w/v NaCl and stirred at 380 rpm. The calculated calibration curves gave high-level linearity for all target analytes with correlation coefficients ranging between 0.9991 and 0.9999. The repeatability of the proposed method, expressed as relative standard deviation, varied between 5.9 and 9.9% (n=8). The detection limits were in the range of 0.022-0.101 microg L(-1) using GC-MS with selective ion monitoring. The LOD values obtained are able to detect these OCPs in aqueous matrices as required by EPA Method 625. Analysis of spiked effluent wastewater samples revealed that the matrix had no effect on extraction for eleven of the analytes but exerted notable effect for the other analytes.
Journal of Chromatography A | 2011
Carol Cortada; Lorena Vidal; Antonio Canals
A fast, simple and environmentally friendly ultrasound-assisted dispersive liquid-liquid microextraction (USADLLME) procedure has been developed to preconcentrate geosmin and 2-methylisoborneol (MIB) from water and wine samples prior to quantification by gas chromatography-mass spectrometry (GC-MS). A two-stage multivariate optimization approach was developed by means of a Plackett-Burman design for screening and selecting the significant variables involved in the USADLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were: solvent volume, 8μL; solvent type: tetrachloroethylene; sample volume, 12 mL; centrifugation speed, 2300 rpm; extraction temperature 20 °C; extraction time, 3 min; and centrifugation time, 3 min. Under the optimized experimental conditions the method gave good levels of repeatability with coefficient of variation under 11% (n=10). Limits of detection were 2 and 9 ng L⁻¹ for geosmin and MIB, respectively. Calculated calibration curves gave high levels of linearity with correlation coefficient values of 0.9988 and 0.9994 for geosmin and MIB, respectively. Finally, the proposed method was applied to the analysis of two water (reservoir and tap) samples and three wine (red, rose and white) samples. The samples were previously analyzed and confirmed free of target analytes. Recovery values ranged between 70 and 113% at two spiking levels (0.25 μg L⁻¹ and 30 ng L⁻¹) showing that the matrix had a negligible effect upon extraction. Only red wine showed a noticeable matrix effect (70-72% recovery). Similar conclusions have been obtained from an uncertainty budget evaluation study.
Journal of Analytical Atomic Spectrometry | 1998
José-Luis Todolí; Jean-Michel Mermet; Antonio Canals; Vincente Hernandis
The acid interference effects observed in inductively coupled plasma atomic emission spectrometry (ICP-AES) for three different nebulizers at sub-millilitre liquid flow rates were investigated. The nebulizers studied were a microconcentric nebulizer (MCN), a pneumatic concentric nebulizer and a conespray nebulizer. Five different matrices were studied: water and solutions containing 0.9 and 3.6 m nitric and sulfuric acid. Primary and tertiary aerosol drop size distributions and ICP-AES emission intensities were measured for all the nebulizers and solutions at liquid flow rates (Ql) ranging from 0.03 to 0.6 ml min–1. A study of the acid effect as a function of the tertiary aerosol drop size was carried out through a laboratory-made impactor device. The results indicate that finer primary and tertiary aerosols are generated as Ql is reduced. Primary aerosols originating from nitric acid and water have similar drop size distributions, whereas they become coarser when sulfuric acid is used. In contrast, acids generate, under all the conditions studied, tertiary aerosols that have a higher proportion of small droplets than water. The results also demonstrate that the MCN gives rise to finer primary and tertiary aerosols than the other two nebulizers. The studies concerning the analytical signal reveal that, for all the acid solutions, a drop in the ICP-AES emission intensity is produced with respect to water. The magnitude of this signal depression depends on the liquid flow rate (i.e., the lower the Ql the higher the signal drop) and on the acid solution employed. The measurements performed with the impactor device have demonstrated that, for the same nebulizer, the acid effects are more pronounced as the proportion of small droplets increases. Accordingly, it was observed that the drain analyte concentration is higher than that found in the tertiary aerosols. As a result, a phenomenon such as aerosol ionic redistribution is expected to contribute to the interferences when acid solutions are analyzed by ICP-AES.
Analytica Chimica Acta | 2011
Aikaterini Papadopoulou; Iván P. Román; Antonio Canals; Konstantina Tyrovola; Elefteria Psillakis
Fast screening of trace amounts of the perfluorooctane sulfonate anion (PFOS) in water samples was performed following a simple, fast and efficient sample preparation procedure based on vortex-assisted liquid-liquid microextraction (VALLME) prior to liquid chromatography-mass spectrometry. VALLME initially uses vortex agitation, a mild emulsification procedure to disperse microvolumes of octanol, a low density extractant solvent, in the aqueous sample. Microextraction under equilibrium conditions is thus achieved within few minutes. Subsequently, centrifugation separates the two phases and restores the initial microdrop shape of the octanol acceptor phase, which can be collected and used for liquid chromatography-single quadrupole mass spectrometry analysis. Several experimental parameters were controlled and the optimum conditions found were: 50 μL of octanol as the extractant phase; 20 mL aqueous donor samples (pH=2); a 2 min vortex extraction time with the vortex agitator set at a 2500 rpm rotational speed; no ionic strength adjustment. Centrifugation for 2 min at 3500 rpm yielded separation of the two phases throughout this study. Enhanced extraction efficiencies were observed at low pH which was likely due to enhanced electrostatic interaction between the negatively PFOS molecules and the positively charged octanol/water interface. The effect of pH was reduced in the presence of sodium chloride, likely due to electrical double layer compression. The linear response range for PFOS was from 5 to 500 ng L(-1) (coefficient of determination, r(2), 0.997) and the relative standard deviation for aqueous solutions containing 10 and 500 ng L(-1) PFOS were 7.4% and 6.5%, respectively. The limit of detection was 1.6 ng L(-1) with an enrichment factor of approximately 250. Analysis of spiked tap, river and well water samples revealed that matrix did not affect extraction.
Journal of Chromatography A | 2012
Lorena Vidal; Jevgeni Parshintsev; Kari Hartonen; Antonio Canals; Marja-Liisa Riekkola
Three ionic liquid (IL)-functionalized silica materials, imidazolium, N-methylimidazolium and 1-alkyl-3-(propyl-3-sulfonate) imidazolium, were synthesised and applied in solid-phase extraction (SPE) of organic acids, amines and aldehydes, which are important compound families in atmospheric aerosol particles. 1-Alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica was tested as sorbent for SPE for the first time. The analytes were separated and detected by liquid chromatography-mass spectrometry (LC-MS). To confirm the results achieved by LC-MS, the acids were additionally determined by gas chromatography-mass spectrometry (GC-MS). The stability of the IL-functionalized silica materials was tested at low and high pH. The effect of the pH on the extraction was also informative of the retention mechanism of the materials. The results showed anion exchange to be the main interaction, but hydrophobic and π interactions and hydrogen bonding also played a role in the extraction. Extraction efficiencies for organic acids ranged from 87 to 110%, except for cis-pinonic acid (19-29%). Lower extraction efficiencies for amines and aldehydes confirmed that anionic exchange was the predominant interaction. Comparisons made with two commercial SPE materials--silica-based strong anion exchange (SAX) and polymer-based mixed-mode anion exchange and reverse-phase (MAX)--showed the IL-functionalized materials to offer different selectivity and better extraction efficiency than SAX for aromatic compounds. Finally, the new materials were successfully tested in the extraction of an atmospheric aerosol sample.