Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio Costanzo is active.

Publication


Featured researches published by Antonio Costanzo.


Nature | 1999

The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage.

JianGen Gong; Antonio Costanzo; Hong-Qiong Yang; Gerry Melino; William G. Kaelin; Massimo Levrero; Jean Y. J. Wang

Cancer chemotherapeutic agents such as cisplatin exert their cytotoxic effect by inducing DNA damage and activating programmed cell death (apoptosis). The tumour-suppressor protein p53 is an important activator of apoptosis. Although p53-deficient cancer cells are less responsive to chemotherapy, their resistance is not complete, which suggests that other apoptotic pathways may exist. A p53 -related gene, p73, which encodes several proteins as a result of alternative splicing,, can also induce apoptosis. Here we show that the amount of p73 protein in the cell is increased by cisplatin. This induction of p73 is not seen in cells unable to carry out mismatch repair and in which the nuclear enzyme c-Abl tyrosine kinase is not activated by cisplatin. The half-life of p73 is prolonged by cisplatin and by co-expression with c-Abl tyrosine kinase; the apoptosis-inducing function of p73 is also enhanced by the c-Abl kinase. Mouse embryo fibroblasts deficient in mismatch repair or in c-Abl do not upregulate p73 and are more resistant to killing by cisplatin. Our results indicate that c-Abl and p73 are components of a mismatch-repair-dependent apoptosis pathway which contributes to cisplatin-induced cytotoxicity.


Molecular Cell | 2002

DNA Damage-Dependent Acetylation of p73 Dictates the Selective Activation of Apoptotic Target Genes

Antonio Costanzo; Paola Merlo; N. Pediconi; Marcella Fulco; Vittorio Sartorelli; Philip A. Cole; Giulia Fontemaggi; Maurizio Fanciulli; Louis Schiltz; Giovanni Blandino; Clara Balsano; Massimo Levrero

The tumor suppressor p53 and its close relative p73 are activated in response to DNA damage resulting in either cell cycle arrest or apoptosis. Here, we show that DNA damage induces the acetylation of p73 by the acetyltransferase p300. Inhibiting the enzymatic activity of p300 hampers apoptosis in a p53(-/-) background. Furthermore, a nonacetylatable p73 is defective in activating transcription of the proapoptotic p53AIP1 gene but retains an intact ability to regulate other targets such as p21. Finally, p300-mediated acetylation of p73 requires the protooncogene c-abl. Our results suggest that DNA damage-induced acetylation potentiates the apoptotic function of p73 by enhancing the ability of p73 to selectively activate the transcription of proapoptotic target genes.


Nature Cell Biology | 2003

Differential regulation of E2F1 apoptotic target genes in response to DNA damage

N. Pediconi; Alessandra Ianari; Antonio Costanzo; L. Belloni; Rita Gallo; Letizia Cimino; Antonio Porcellini; Isabella Screpanti; Clara Balsano; Edoardo Alesse; Alberto Gulino; Massimo Levrero

E2F1, a member of the E2F family of transcription factors, in addition to its established proliferative effect, has also been implicated in the induction of apoptosis through p53-dependent and p53-independent pathways. Several genes involved in the activation or execution of the apoptotic programme have recently been shown to be upregulated at the transcriptional level by E2F1 overexpression, including the genes encoding INK4a/ARF, Apaf-1, caspase 7 and p73 (refs 3–5). E2F1 is stabilized in response to DNA damage but it has not been established how this translates into the activation of specific subsets of E2F target genes. Here, we applied a chromatin immunoprecipitation approach to show that, in response to DNA damage, E2F1 is directed from cell cycle progression to apoptotic E2F target genes. We identify p73 as an important E2F1 apoptotic target gene in DNA damage response and we show that acetylation is required for E2F1 recruitment on the P1p73 promoter and for its transcriptional activation.


Proceedings of the National Academy of Sciences of the United States of America | 2007

p63 induces key target genes required for epidermal morphogenesis

Maranke I. Koster; Daisy Dai; Barbara Marinari; Yuji Sano; Antonio Costanzo; Michael Karin; Dennis R. Roop

Mice lacking p63, a single gene that encodes a group of transcription factors that either contain (TA) or lack (ΔN) a transactivation domain, fail to develop stratified epithelia as well as epithelial appendages and limbs. ΔNp63 isoforms are predominantly expressed during late embryonic and postnatal epidermal development, however, the function of these proteins remains elusive. Using an epidermal-specific inducible knockdown mouse model, we demonstrate that ΔNp63 proteins are essential for maintaining basement membrane integrity and terminal differentiation of keratinocytes. Furthermore, we have identified two ΔNp63α target genes that mediate these processes. We propose that ΔNp63α initially induces expression of the extracellular matrix component Fras1, which is required for maintaining the integrity of the epidermal–dermal interface at the basement membrane. Subsequently, induction of IκB kinase-α by ΔNp63α initiates epidermal terminal differentiation resulting in the formation of the spinous layer. Our data provide insights into the role of ΔNp63α in epidermal morphogenesis and homeostasis, and may contribute to our understanding of the pathogenic mechanisms underlying disorders caused by p63 mutations.


Nature Medicine | 2009

Involvement of interleukin-21 in the epidermal hyperplasia of psoriasis

Roberta Caruso; Elisabetta Botti; Massimiliano Sarra; Maria Esposito; Carmine Stolfi; Laura Diluvio; Maria Laura Giustizieri; Valentina Pacciani; Annamaria Mazzotta; Elena Campione; Thomas T. MacDonald; Sergio Chimenti; Francesco Pallone; Antonio Costanzo; Giovanni Monteleone

T cells are crucial mediators of the skin damage in psoriasis. We here show that interleukin-21 (IL-21), a T cell–derived cytokine, is highly expressed in the skin of individuals with psoriasis, stimulates human keratinocytes to proliferate and causes epidermal hyperplasia when injected intradermally into mice. In the human psoriasis xenograft mouse model, blockade of IL-21 activity resolves inflammation and reduces keratinocyte proliferation. Blocking IL-21 may represent a new therapeutic strategy in psoriasis.


Nature Communications | 2014

The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis

Roberto Lande; Elisabetta Botti; Camilla Jandus; Danijel Dojcinovic; Giorgia Fanelli; Curdin Conrad; Georgios Chamilos; Laurence Feldmeyer; Barbara Marinari; Susan Chon; Luis Vence; Valeria Riccieri; Phillippe Guillaume; Alex A. Navarini; Pedro Romero; Antonio Costanzo; Enza Piccolella; Michel Gilliet; Loredana Frasca

Psoriasis is a common T-cell-mediated skin disease with 2-3% prevalence worldwide. Psoriasis is considered to be an autoimmune disease, but the precise nature of the autoantigens triggering T-cell activation remains poorly understood. Here we find that two-thirds of patients with moderate-to-severe plaque psoriasis harbour CD4(+) and/or CD8(+) T cells specific for LL37, an antimicrobial peptide (AMP) overexpressed in psoriatic skin and reported to trigger activation of innate immune cells. LL37-specific T cells produce IFN-γ, and CD4(+) T cells also produce Th17 cytokines. LL37-specific T cells can infiltrate lesional skin and may be tracked in patients blood by tetramers staining. Presence of circulating LL37-specific T cells correlates significantly with disease activity, suggesting a contribution to disease pathogenesis. Thus, we uncover a role of LL37 as a T-cell autoantigen in psoriasis and provide evidence for a role of AMPs in both innate and adaptive immune cell activation.


Biochemical Pharmacology | 1998

Apoptotic, non-apoptotic, and anti-apoptotic pathways of tumor necrosis factor signalling

Gioacchino Natoli; Antonio Costanzo; Francesco Guido; Francesca Moretti; Massimo Levrero

Early events in the signalling of tumor necrosis factor-receptor 1 (TNF-R1), which is the main TNF receptor on most cell types, have been clarified recently. A multimolecular signal transducing complex from which several pathways originate rapidly forms upon TNF-induced aggregation of the receptor. Although fully capable of transducing apoptotic signals, which depend on the adapter Fas-associated death domain protein (FADD) and on the subsequent recruitment/activation of the apoptotic proteases, TNF-R1 usually does not kill cells; this is due to the induction of a complex cytoprotective response that requires TNF-receptor associated factor 2 (TRAF2), a signal transducer that couples TNF-R1 to both nuclear factor kappaB (NFkappaB)-dependent and NFkappaB-independent transcriptional events implicated in induction of genes protecting from TNF cytotoxicity. Although absolutely required for cytoprotection, TNF-receptor associated factor 2 is not sufficient to protect cells from TNF, thus suggesting that it may act in concert with additional TNF-R1 complex components. In this commentary, we will discuss some critical aspects of TNF-R1 signal transduction that are not fully understood: Why do cells not die before the protective protein synthesis has occurred? What are the mechanisms implicated in the termination of each TNF-R1-elicited response? Are there regulatory mechanisms capable of influencing the composition of the TNF-R1 complex and, consequently, the propagation of specific signals?


Journal of Cellular Physiology | 2003

Endothelial activation by angiotensin II through NFκB and p38 pathways: Involvement of NFκB-inducible kinase (NIK), free oxygen radicals, and selective inhibition by aspirin†

Antonio Costanzo; Francesca Moretti; Vito L. Burgio; Cristina Bravi; Francesco Guido; Massimo Levrero; Pier Lorenzo Puri

Angiotensin‐II (AII), the dominant effector of the renin–angiotensin system, is involved in the pathogenesis of cardiovascular diseases, such as atherosclerosis. Upregulation of the adhesion molecules VCAM‐1, ICAM‐1, and E‐selectin in endothelial cells by inflammatory cytokines through nuclear factor kappa B (NFκB) activation is implicated in formation and progression of atherosclerotic plaque. Here we show that AII induces NFκB‐dependent transcription in primary endothelial cell lines, leading to the upregulation of ICAM‐1 and VCAM‐1 expression. NFκB activation by AII is mediated by the NFκB‐inducing kinase (NIK), a common mediator of NFκB activation by inflammatory cytokines, such as TNF‐α. However, NFκB stimulation by AII differs from that of TNF‐α since a TNF‐receptor associated factor 2 (TRAF‐2) dominant negative mutant does not prevent AII‐mediated NFκB activation. In analogy with TNF‐α‐dependent activation of NFκB, treatment with either the anti‐oxidant N‐acetyl cysteine (NAC) or the cyclooxygenase (COX) inhibitor acetyl salicylic acid (aspirin), but not indometacin, prevents the induction of NFκB‐dependent transcription by AII. Thus, production of reactive oxygen species, aspirin (asp)‐sensitive enzymes of the arachidonate metabolism, and NIK are common transducers of AII‐ and TNF‐dependent pathways to NFκB. AII also activates the inflammatory p38 kinase in endothelial cells, an effect inhibited by exposure to either NAC or asp. Pharmacological interference of the p38 pathway, with the inhibitor SB 202190, prevented AII‐mediated activation of the NFκB target V‐CAM, without affecting degradation of IκBα. These results support a pro‐inflammatory effect of the vasoactive peptide AII in endothelial cells, through at least two pathways—NFκB and p38—both of which are sensitive to asp and antioxidants.


Molecular and Cellular Biology | 1994

Induction of the DNA-binding activity of c-jun/c-fos heterodimers by the hepatitis B virus transactivator pX.

Gioacchino Natoli; Maria Laura Avantaggiati; Paolo Chirillo; Antonio Costanzo; Marco Artini; C. Balsano; Massimo Levrero

The hepatitis B virus (HBV) X protein (pX) is capable of activating transcription regulated by viral and cellular promoters containing binding sites for different transcription factors, including AP1. In this study we have analyzed the mechanisms of AP1 induction by pX. The hepatitis B virus transactivator was able to activate TRE (12-O-tetradecanoylphorbol-13-acetate response element)-directed transcription in different cell lines, including HepG2, HeLa, CV1, and PLC/PRF/5 cells. pX-induced AP1 activation in HepG2 cells was associated with an increase in the DNA-binding activity of c-Jun/c-Fos heterodimers, which was not dependent either on an increase in the overall amount of c-Fos and c-Jun proteins in the cells or on formation of dimers between pX and the two proteins, thus suggesting the involvement of posttranslational modifications of the transcription factor. The observation that the overexpression of c-Jun and c-Fos in the cells results in a strong augmentation of the effect of pX on TRE-directed transcription is additional evidence indicating the involvement of posttranscriptional modifications of c-Jun/c-Fos heterodimers. The increased AP1 binding observed in the presence of pX was unaffected by the protein kinase C inhibitors calphostin C and sphingosine and by the protein kinase A inhibitor HA1004, while it was almost completely blocked by staurosporine, a potent and nonspecific protein kinase inhibitor, suggesting that protein kinase C- and A-independent phosphorylation events might play a role in the phenomenon. The ability of pX also to increase TRE-directed transcription in cell lines in which AP1-binding activity is not increased (i.e., HeLa, CV1, and PLC/PRF/5 cells) suggests that pX can activate canonical TRE sites by different mechanisms as well.


Cell Death & Differentiation | 1999

Structure, function and regulation of p63 and p73.

Massimo Levrero; V De Laurenzi; Antonio Costanzo; J Gong; Gerry Melino; Jean Y. J. Wang

The p53 tumor suppressor gene is one of the most frequently mutated genes in human cancers.* p53 is a sequence-specific transcription factor and plays a critical role in activating the expression of genes involved in cell cycle arrest or apoptosis under conditions of genotoxic stress., For over two decades, p53 was thought to be the only gene of its kind in the vertebrate genomes. This strong conviction, which was widely accepted in the p53 field, has now been proven to be incorrect. Two genes, referred to as p63 and p73, have been found to encode proteins that share a significant amino-acid identity in the transactivation domain, the DNA binding domain, and the oligomerization domain with p53. In the short period since their cloning, a number of investigators have reported on the structure, the function and the regulation of p63 and p73. This review summarizes the current information on the p63 and the p73 genes, with a focus on the differences between the three members in this newly defined p53-gene family.

Collaboration


Dive into the Antonio Costanzo's collaboration.

Top Co-Authors

Avatar

Sergio Chimenti

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Massimo Levrero

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Elisabetta Botti

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Barbara Marinari

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Francesca Moretti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Luca Bianchi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Marina Talamonti

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Marina Papoutsaki

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Giulia Spallone

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge