Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Massimo Levrero is active.

Publication


Featured researches published by Massimo Levrero.


Nature | 1999

The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage.

JianGen Gong; Antonio Costanzo; Hong-Qiong Yang; Gerry Melino; William G. Kaelin; Massimo Levrero; Jean Y. J. Wang

Cancer chemotherapeutic agents such as cisplatin exert their cytotoxic effect by inducing DNA damage and activating programmed cell death (apoptosis). The tumour-suppressor protein p53 is an important activator of apoptosis. Although p53-deficient cancer cells are less responsive to chemotherapy, their resistance is not complete, which suggests that other apoptotic pathways may exist. A p53 -related gene, p73, which encodes several proteins as a result of alternative splicing,, can also induce apoptosis. Here we show that the amount of p73 protein in the cell is increased by cisplatin. This induction of p73 is not seen in cells unable to carry out mismatch repair and in which the nuclear enzyme c-Abl tyrosine kinase is not activated by cisplatin. The half-life of p73 is prolonged by cisplatin and by co-expression with c-Abl tyrosine kinase; the apoptosis-inducing function of p73 is also enhanced by the c-Abl kinase. Mouse embryo fibroblasts deficient in mismatch repair or in c-Abl do not upregulate p73 and are more resistant to killing by cisplatin. Our results indicate that c-Abl and p73 are components of a mismatch-repair-dependent apoptosis pathway which contributes to cisplatin-induced cytotoxicity.


Journal of Hepatology | 2008

STATEMENTS FROM THE TAORMINA EXPERT MEETING ON OCCULT HEPATITIS B VIRUS INFECTION

Giovanni Raimondo; Jean-Pierre Allain; Maurizia Rossana Brunetto; Marie Annick Buendia; Ding-Shinn Chen; M. Colombo; A. Craxì; Francesco Donato; Carlo Ferrari; Giovanni Battista Gaeta; Wolfram H. Gerlich; Massimo Levrero; Stephen Locarnini; Thomas Michalak; Mario U. Mondelli; Jean-Michel Pawlotsky; Teresa Pollicino; Daniele Prati; Massimo Puoti; Didier Samuel; Daniel Shouval; Antonina Smedile; Giovanni Squadrito; Christian Trepo; Erica Villa; Hans Will; Alessandro Zanetti; Fabien Zoulim

Giovanni Raimondo*, Jean-Pierre Allain, Maurizia R. Brunetto, Marie-Annick Buendia, Ding-Shinn Chen, Massimo Colombo, Antonio Craxi, Francesco Donato, Carlo Ferrari, Giovanni B. Gaeta, Wolfram H. Gerlich, Massimo Levrero, Stephen Locarnini, Thomas Michalak, Mario U. Mondelli, Jean-Michel Pawlotsky, Teresa Pollicino, Daniele Prati, Massimo Puoti, Didier Samuel, Daniel Shouval, Antonina Smedile, Giovanni Squadrito, Christian Trepo, Erica Villa, Hans Will, Alessandro R. Zanetti, Fabien Zoulim


Molecular Cell | 1997

Differential Roles of p300 and PCAF Acetyltransferases in Muscle Differentiation

Pier Lorenzo Puri; Vittorio Sartorelli; Xiang Jiao Yang; Yasuo Hamamori; Vasily V. Ogryzko; Bruce H. Howard; Larry Kedes; Jean Y. J. Wang; Adolf Graessmann; Yoshihiro Nakatani; Massimo Levrero

PCAF is a histone acetyltransferase that associates with p300/CBP and competes with E1A for access to them. While exogenous expression of PCAF potentiates both MyoD-directed transcription and myogenic differentiation, PCAF inactivation by anti-PCAF antibody microinjection prevents differentiation. MyoD interacts directly with both p300/CBP and PCAF, forming a multimeric protein complex on the promoter elements. Viral transforming factors that interfere with muscle differentiation disrupt this complex without affecting the MyoD-DNA interaction, indicating functional significance of the complex formation. Exogenous expression of PCAF or p300 promotes p21 expression and terminal cell-cycle arrest. Both of these activities are dependent on the histone acetyltransferase activity of PCAF, but not on that of p300. These results indicate that recruitment of histone acetyltransferase activity of PCAF by MyoD, through p300/CBP, is crucial for activation of the myogenic program.


Oncogene | 2006

Viral hepatitis and liver cancer: the case of hepatitis C

Massimo Levrero

Chronic infection with the hepatitis C virus (HCV) is a major risk factor for the development of hepatocellular carcinoma (HCC) worldwide. The pathogenesis of HCC in HCV infection has extensively been analysed. Hepatitis C virus-induced chronic inflammation and the effects of cytokines in the development of fibrosis and liver cell proliferation are considered as one of the major pathogenic mechanisms. Increasing experimental evidence suggests that HCV contributes to HCC by directly modulating pathways that promote the malignant transformation of hepatocytes. Hepatitis C virus is an RNA virus that does not integrate into the host genome but HCV proteins interact with many host-cell factors well beyond their roles in the viral life cycle and are involved in a wide range of activities, including cell signaling, transcription, cell proliferation, apoptosis, membrane rearrangements, vesicular trafficking and translational regulation. At least four of the HCV gene products, namely HCV core, NS3, NS4B and NS5A, have been shown to exhibit transformation potential in tissue culture and several potentially oncogenic pathways have been shown to be altered by the expression of HCV proteins. Both HCV core and NS5A induce the accumulation of wild-type β-catenin and the Wnt–β-catenin pathway emerges as a common target for HCV (and HBV) in human HCCs, also independently from axin/β-catenin gene mutations. Induction of both endoplasmic reticulum stress and oxidative stress by HCV proteins might also contribute to HCV transformation. Most of the putative transforming functions of the HCV proteins have been defined in artificial cellular systems, which may not be applicable to HCV infection in vivo, and still need to be established in relevant infection and disease models.


Journal of Hepatology | 2009

Control of cccDNA function in hepatitis B virus infection

Massimo Levrero; Teresa Pollicino; J. Petersen; L. Belloni; Giovanni Raimondo; M. Dandri

The template of hepatitis B virus (HBV) transcription, the covalently closed circular DNA (cccDNA), plays a key role in the life cycle of the virus and permits the persistence of infection. Novel molecular techniques have opened new possibilities to investigate the organization and the activity of the cccDNA minichromosome in vivo, and recent advances have started to shed light on the complexity of the mechanisms controlling cccDNA function. Nuclear cccDNA accumulates in hepatocyte nuclei as a stable minichromosome organized by histone and non-histone viral and cellular proteins. Identification of the molecular mechanisms regulating cccDNA stability and its transcriptional activity at the RNA, DNA and epigenetic levels in the course of chronic hepatitis B (CH-B) infection may reveal new potential therapeutic targets for anti-HBV drugs and hence assist in the design of strategies aimed at silencing and eventually depleting the cccDNA reservoir.


Molecular Cell | 2002

DNA Damage-Dependent Acetylation of p73 Dictates the Selective Activation of Apoptotic Target Genes

Antonio Costanzo; Paola Merlo; N. Pediconi; Marcella Fulco; Vittorio Sartorelli; Philip A. Cole; Giulia Fontemaggi; Maurizio Fanciulli; Louis Schiltz; Giovanni Blandino; Clara Balsano; Massimo Levrero

The tumor suppressor p53 and its close relative p73 are activated in response to DNA damage resulting in either cell cycle arrest or apoptosis. Here, we show that DNA damage induces the acetylation of p73 by the acetyltransferase p300. Inhibiting the enzymatic activity of p300 hampers apoptosis in a p53(-/-) background. Furthermore, a nonacetylatable p73 is defective in activating transcription of the proapoptotic p53AIP1 gene but retains an intact ability to regulate other targets such as p21. Finally, p300-mediated acetylation of p73 requires the protooncogene c-abl. Our results suggest that DNA damage-induced acetylation potentiates the apoptotic function of p73 by enhancing the ability of p73 to selectively activate the transcription of proapoptotic target genes.


Nature Structural & Molecular Biology | 2004

Regulation of the p300 HAT domain via a novel activation loop

Paul R. Thompson; Dongxia Wang; Ling Wang; Marcella Fulco; N. Pediconi; Dianzheng Zhang; Woojin An; Qingyuan Ge; Robert G. Roeder; Jiemin Wong; Massimo Levrero; Vittorio Sartorelli; Robert J. Cotter; Philip A. Cole

The transcriptional coactivator p300 is a histone acetyltransferase (HAT) whose function is critical for regulating gene expression in mammalian cells. However, the molecular events that regulate p300 HAT activity are poorly understood. We evaluated autoacetylation of the p300 HAT protein domain to determine its function. Using expressed protein ligation, the p300 HAT protein domain was generated in hypoacetylated form and found to have reduced catalytic activity. This basal catalytic rate was stimulated by autoacetylation of several key lysine sites within an apparent activation loop motif. This post-translational modification and catalytic regulation of p300 HAT activity is conceptually analogous to the activation of most protein kinases by autophosphorylation. We therefore propose that this autoregulatory loop could influence the impact of p300 on a wide variety of signaling and transcriptional events.


Journal of Clinical Investigation | 2012

IFN-α inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome

L. Belloni; L. Allweiss; Francesca Guerrieri; N. Pediconi; T. Volz; Teresa Pollicino; Joerg Petersen; Giovanni Raimondo; M. Dandri; Massimo Levrero

HBV infection remains a leading cause of death worldwide. IFN-α inhibits viral replication in vitro and in vivo, and pegylated IFN-α is a commonly administered treatment for individuals infected with HBV. The HBV genome contains a typical IFN-stimulated response element (ISRE), but the molecular mechanisms by which IFN-α suppresses HBV replication have not been established in relevant experimental systems. Here, we show that IFN-α inhibits HBV replication by decreasing the transcription of pregenomic RNA (pgRNA) and subgenomic RNA from the HBV covalently closed circular DNA (cccDNA) minichromosome, both in cultured cells in which HBV is replicating and in mice whose livers have been repopulated with human hepatocytes and infected with HBV. Administration of IFN-α resulted in cccDNA-bound histone hypoacetylation as well as active recruitment to the cccDNA of transcriptional corepressors. IFN-α treatment also reduced binding of the STAT1 and STAT2 transcription factors to active cccDNA. The inhibitory activity of IFN-α was linked to the IRSE, as IRSE-mutant HBV transcribed less pgRNA and could not be repressed by IFN-α treatment. Our results identify a molecular mechanism whereby IFN-α mediates epigenetic repression of HBV cccDNA transcriptional activity, which may assist in the development of novel effective therapeutics.


The EMBO Journal | 1997

p300 is required for MyoD-dependent cell cycle arrest and muscle-specific gene transcription.

Pier Lorenzo Puri; Maria Laura Avantaggiati; Clara Balsano; Nianli Sang; Adolf Graessmann; Antonio Giordano; Massimo Levrero

The nuclear phosphoprotein p300 is a new member of a family of ‘co‐activators’ (which also includes the CREB binding protein CBP), that directly modulate transcription by interacting with components of the basal transcriptional machinery. Both p300 and CBP are targeted by the adenovirus E1A protein, and binding to p300 is required for E1A to inhibit terminal differentiation in both keratinocytes and myoblasts. Here we demonstrate that, in differentiating skeletal muscle cells, p300 physically interacts with the myogenic basic helix–loop–helix (bHLH) regulatory protein MyoD at its DNA binding sites. During muscle differentiation, MyoD plays a dual role: besides activating muscle‐specific transcription, it induces permanent cell cycle arrest by up‐regulating the cyclin‐dependent kinase inhibitor p21. We show that p300 is involved in both these activities. Indeed, E1A mutants lacking the ability to bind p300 are greatly impaired in the repression of E‐box‐driven transcription, and p300 overexpression rescues the wild‐type E1A‐mediated repression. Moreover, p300 potentiates MyoD‐ and myogenin‐dependent activation of transcription from E‐box‐containing reporter genes. We also provide evidence, obtained by microinjection of anti‐p300 antibodies, that p300 is required for MyoD‐dependent cell cycle arrest in either myogenic cells induced to differentiate or in MyoD‐converted C3H10T1/2 fibroblasts, but is dispensable for maintenance of the post‐mitotic state of myotubes.


Nature Cell Biology | 2003

Differential regulation of E2F1 apoptotic target genes in response to DNA damage

N. Pediconi; Alessandra Ianari; Antonio Costanzo; L. Belloni; Rita Gallo; Letizia Cimino; Antonio Porcellini; Isabella Screpanti; Clara Balsano; Edoardo Alesse; Alberto Gulino; Massimo Levrero

E2F1, a member of the E2F family of transcription factors, in addition to its established proliferative effect, has also been implicated in the induction of apoptosis through p53-dependent and p53-independent pathways. Several genes involved in the activation or execution of the apoptotic programme have recently been shown to be upregulated at the transcriptional level by E2F1 overexpression, including the genes encoding INK4a/ARF, Apaf-1, caspase 7 and p73 (refs 3–5). E2F1 is stabilized in response to DNA damage but it has not been established how this translates into the activation of specific subsets of E2F target genes. Here, we applied a chromatin immunoprecipitation approach to show that, in response to DNA damage, E2F1 is directed from cell cycle progression to apoptotic E2F target genes. We identify p73 as an important E2F1 apoptotic target gene in DNA damage response and we show that acetylation is required for E2F1 recruitment on the P1p73 promoter and for its transcriptional activation.

Collaboration


Dive into the Massimo Levrero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Pediconi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Belloni

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Artini

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Balsano

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge