Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio Daga is active.

Publication


Featured researches published by Antonio Daga.


Cell Cycle | 2013

Metformin selectively affects human glioblastoma tumor-initiating cell viability: A role for metformin-induced inhibition of Akt

Roberto Würth; Alessandra Pattarozzi; Monica Gatti; Adirana Bajetto; Alessandro Corsaro; Alessia Parodi; Rodolfo Sirito; Michela Massollo; Cecilia Marini; Gianluigi Zona; Daniela Fenoglio; Gianmario Sambuceti; Gilberto Filaci; Antonio Daga; Federica Barbieri; Tullio Florio

Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect.


European Journal of Immunology | 2001

DNase I mediates internucleosomal DNA degradation in human cells undergoing drug-induced apoptosis.

Mara Oliveri; Antonio Daga; Claudia Cantoni; Claudio Lunardi; Romano Millo; Antonio Puccetti

Internucleosomal DNA fragmentation following the activation of endonucleases is the common end point of apoptosis. DNase I, a Ca2+ / Mg2+‐dependent endonuclease ubiquitously expressed in mammalian tissues, is believed to play a role in this process. To analyze the in vivo function of this enzyme in human cells, we have generated a cell line with targeted disruption of the DNase I gene, as well as several stable cell lines which overexpress the DNase I gene. Inactivation of the human DNase I gene was obtained in the Jurkat T cell clone JA3, characterized by high susceptibility to apoptotic cell death induced by pharmacological stimuli. JA3 cells, after disruption of the DNase I gene, became resistant to apoptotic stimuli. DNase I was overexpressed in the human cell lines JA3, K562 (erythroleukemia), M 14 (melanoma) and CEM (T cell lymphoma). Remarkably, stable overexpression of DNase I gene resulted in accelerated apoptosis in JA3 cells and induced apoptosis in K562, CEM and M14 cell lines, which are otherwise resistant to internucleosomal DNA degradation following pharmacological stimuli. Our study provides the first in vivo evidence that DNase I mediates internucleosomal DNA degradation in human cells undergoing drug‐induced apoptosis.


Clinical Cancer Research | 2008

Enhanced Antitumor Efficacy of Clinical-Grade Vasculature-Targeted Liposomal Doxorubicin

Fabio Pastorino; Daniela Di Paolo; Federica Piccardi; Beatrice Nico; Domenico Ribatti; Antonio Daga; Gabriella Baio; C. E. Neumaier; Chiara Brignole; Monica Loi; Danilo Marimpietri; Gabriella Pagnan; Michele Cilli; Seema V. Garde; Renato Longhi; Angelo Corti; Theresa M. Allen; Jinzi J. Wu; Mirco Ponzoni

Purpose:In vivo evaluation of good manufacturing practice-grade targeted liposomal doxorubicin (TVT-DOX), bound to a CD13 isoform expressed on the vasculature of solid tumors, in human tumor xenografts of neuroblastoma, ovarian cancer, and lung cancer. Experimental Design: Mice were implanted with lung, ovarian, or neuroblastoma tumor cells via the pulmonary, peritoneal, or orthotopic (adrenal gland) routes, respectively, and treated, at different days post inoculation, with multiple doses of doxorubicin, administered either free or encapsulated in untargeted liposomes (Caelyx) or in TVT-DOX. The effect of TVT-DOX treatment on tumor cell proliferation, viability, apoptosis, and angiogenesis was studied by immunohistochemical analyses of neoplastic tissues and using the chick embryo chorioallantoic membrane assay. Results: Compared with the three control groups (no doxorubicin, free doxorubicin, or Caelyx), statistically significant improvements in survival was seen in all three animal models following treatment with 5 mg/kg (maximum tolerated dose) of TVT-DOX, with long-term survivors occurring in the neuroblastoma group; increased survival was also seen at a dose of 1.7 mg/kg in mice bearing neuroblastoma or ovarian cancer. Minimal residual disease after surgical removal of neuroblastoma primary mass, and the enhanced response to TVT-DOX, was visualized and quantified by bioluminescence imaging and with magnetic resonance imaging. When treated with TVT-DOX, compared with Caelyx, all three tumor models, as assayed by immunohistochemistry and chorioallantoic membrane, showed statistically significant reductions in cell proliferation, blood vessel density, and microvessel area, showing increased cell apoptosis. Conclusion: TVT-DOX should be evaluated as a novel angiostatic strategy for adjuvant therapy of solid tumors.


Toxicology | 2013

Inhibition of CXCL12/CXCR4 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity.

Monica Gatti; Alessandra Pattarozzi; Adriana Bajetto; Roberto Würth; Antonio Daga; Pietro Fiaschi; Gianluigi Zona; Tullio Florio; Federica Barbieri

Cancer stem cells (CSCs) or tumor initiating cells (TICs) drive glioblastoma (GBM) development, invasiveness and drug resistance. Distinct molecular pathways might regulate CSC biology as compared to cells in the bulk tumor mass, representing potential therapeutic targets. Chemokine CXCL12 and its receptor CXCR4 control proliferation, invasion and angiogenesis in GBM cell lines and primary cultures, but little is known about their activity in GBM CSCs. We demonstrate that CSCs, isolated from five human GBMs, express CXCR4 and release CXCL12 in vitro, although different levels of expression and secretion were observed in individual cultures, as expected for the heterogeneity of GBMs. CXCL12 treatment induced Akt-mediated significant pro-survival and self-renewal activities, while proliferation was induced at low extent. The role of CXCR4 signaling in CSC survival and self-renewal was further demonstrated using the CXCR4 antagonist AMD3100 that reduced self-renewal and survival with greater efficacy in the cultures that released higher CXCL12 amounts. The specificity of CXCL12 in sustaining CSC survival was demonstrated by the lack of AMD3100-dependent inhibition of viability in differentiated cells derived from the same GBMs. These findings, although performed on a limited number of tumor samples, suggest that the CXCL12/CXCR4 interaction mediates survival and self-renewal in GBM CSCs with high selectivity, thus emerging as a candidate system responsible for maintenance of cancer progenitors, and providing survival benefits to the tumor.


International Journal of Cancer | 2007

Glioma immunotherapy by IL-21 gene-modified cells or by recombinant IL-21 involves antibody responses

Antonio Daga; Anna Maria Orengo; Rosaria Gangemi; Daniela Marubbi; Marzia Perera; Alberto Comes; Silvano Ferrini; Giorgio Corte

Most tumors of the central nervous system, especially glioblastoma, are refractory to treatment and invariably lethal. The aim of this study was to assess the ability of different interleukins (IL), IL‐2, IL‐12 and IL‐21, produced by transduced glioma cells to activate an immune response and trigger intracranial tumor rejection. Such experiments were performed by the use of a slow‐growing clone of GL261 (GL D2‐60) that was used as orthotopic glioma model. Using GL D2‐60‐transduced cells, all cytokines elicited an immune response against the tumor. Most notably 100% of the animals receiving a primary implant of IL‐21‐transduced cells rejected the implant, and 76% of these animals survived to a subsequent rechallenge with GL261 parental cells, while the other transduced cytokine genes were not as effective. Rejection responses were also obtained by admixing wild‐type tumor cells with IL‐21‐producing GL D2‐60 cells, indicating a local bystander effect of IL‐21. More importantly, IL‐21‐secreting GL D2‐60 cells or 1 μg of rIL‐21 protein stereotactically injected into established GL D2‐60 tumors were able to trigger glioblastoma rejection in 90 and 77% of mice, respectively. Again most of these mice survived to GL261 rechallenge. Immune mice showed antibody responses to glioma antigens, predominantly involving IgG2a and IgG2b isotypes, which mediated complement‐ or cell‐dependent glioma cell lysis. Antibody responses were crucial for glioma immunotherapy by IL‐21‐secreting GL D2‐60 cells, as immunotherapy was uneffective in syngeneic μMT B‐cell‐deficient mice. These results suggest that IL‐21 should be considered as a suitable candidate for glioma immunotherapy by local delivery.


Tumori | 2008

MR and iron magnetic nanoparticles. Imaging opportunities in preclinical and translational research

C. E. Neumaier; Gabriella Baio; Silvano Ferrini; Giorgio Corte; Antonio Daga

Ultrasmall superparamagnetic iron oxide nanoparticles and magnetic resonance imaging provide a non-invasive method to detect and label tumor cells. These nanoparticles exhibit unique properties of superparamagnetism and can be utilized as excellent probes for magnetic resonance imaging. Most work has been performed using a magnetic resonance scanner with high field strength up to 7 T. Ultrasmall superparamagnetic iron oxide nanoparticles may represent a suitable tool for labeling molecular probes that target specific tumor-associated markers for in vitro and in vivo detection by magnetic resonance imaging. In our study, we demonstrated that magnetic resonance imaging at 1.5 T allows the detection of ultrasmall superparamagnetic iron oxide nanoparticle conjugated antibody specifically bound to human tumor cells in vitro and in vivo, and that the magnetic resonance signal intensity correlates with the concentration of ultrasmall superparamagnetic iron oxide nanoparticle antibody used and with the antigen density at the cell surface. The experiments were performed using two different means of targeting: direct and indirect magnetic tumor targeting. The imaging of tumor antigens using immunospecific contrast agents is a rapidly evolving field, which can potentially aid in early disease detection, monitoring of treatment efficacy, and drug development. Cell labeling by iron oxide nanoparticles has emerged as a potentially powerful tool to monitor trafficking of a large number of cells in the cell therapy field. We also studied the labeling of natural killer cells with iron nanoparticles to a level that would allow the detection of their signal intensity with a clinical magnetic resonance scanner at 1.5 T. Magnetic resonance imaging and iron magnetic nanoparticles are able to increase the accuracy and the specificity of imaging and represent new imaging opportunities in preclinical and translational research.


PLOS ONE | 2012

Mda-9/syntenin is expressed in uveal melanoma and correlates with metastatic progression.

Rosaria Gangemi; Valentina Mirisola; Gaia Barisione; Marina Fabbi; Antonella Brizzolara; Francesco Lanza; Carlo Mosci; Sandra Salvi; Marina Gualco; Mauro Truini; Giovanna Angelini; Simona Boccardo; Michele Cilli; Irma Airoldi; Paola Queirolo; Martine J. Jager; Antonio Daga; Ulrich Pfeffer; Silvano Ferrini

Uveal melanoma is an aggressive cancer that metastasizes to the liver in about half of the patients, with a high lethality rate. Identification of patients at high risk of metastases may provide indication for a frequent follow-up for early detection of metastases and treatment. The analysis of the gene expression profiles of primary human uveal melanomas showed high expression of SDCBP gene (encoding for syndecan-binding protein-1 or mda-9/syntenin), which appeared higher in patients with recurrence, whereas expression of syndecans was lower and unrelated to progression. Moreover, we found that high expression of SDCBP gene was related to metastatic progression in two additional independent datasets of uveal melanoma patients. More importantly, immunohistochemistry showed that high expression of mda-9/syntenin protein in primary tumors was significantly related to metastatic recurrence in our cohort of patients. Mda-9/syntenin expression was confirmed by RT-PCR, immunofluorescence and immunohistochemistry in cultured uveal melanoma cells or primary tumors. Interestingly, mda-9/syntenin showed both cytoplasmic and nuclear localization in cell lines and in a fraction of patients, suggesting its possible involvement in nuclear functions. A pseudo-metastatic model of uveal melanoma to the liver was developed in NOD/SCID/IL2Rγ null mice and the study of mda-9/syntenin expression in primary and metastatic lesions revealed higher mda-9/syntenin in metastases. The inhibition of SDCBP expression by siRNA impaired the ability of uveal melanoma cells to migrate in a wound–healing assay. Moreover, silencing of SDCBP in mda-9/syntenin-high uveal melanoma cells inhibited the hepatocyte growth factor (HGF)-triggered invasion of matrigel membranes and inhibited the activation of FAK, AKT and Src. Conversely syntenin overexpression in mda-9/syntenin-low uveal melanoma cells mediated opposite effects. These results suggest that mda-9/syntenin is involved in uveal melanoma progression and that it warrants further investigation as a candidate molecular marker of metastases and a potential therapeutic target.


European Journal of Neuroscience | 2006

Effects of Emx2 inactivation on the gene expression profile of neural precursors

Rosaria Gangemi; Antonio Daga; Luca Muzio; Daniela Marubbi; Serena Cocozza; Marzia Perera; Sara Verardo; Domenico Bordo; Fabrizio Griffero; Maria Cristina Capra; Antonello Mallamaci; Giorgio Corte

Emx2 plays a crucial role in the development of the diencephalon and dorsal telencephalon. Thus, Emx2‐null mutants have abnormal cortical lamination and a reduction in size of the caudal and medial areas of the prosencephalon. Emx2 is expressed in neural precursors of the subventricular zone in vivo and in cultured neurospheres in vitro where it controls the size of the transit‐amplifying population, affecting proliferation and clonal efficiency of neural stem cells. To identify the cellular processes mastered by Emx2, and possibly the molecular mechanisms by which the gene exerts its action, we compared the expression profile of cultured neurospheres derived from wild‐type and Emx2‐null mouse embryos. The differential expression of several genes was also confirmed by semiquantitative RT‐PCR, real‐time PCR and cytofluorimetric analysis in different preparations of neurospheres, and by in situ hybridization. The gene expression profile suggested a role for Emx2 in regulating the differentiation and migration properties of neural precursor cells. This involvement was confirmed in vitro, where the altered clonogenicity and impaired migration of Emx2‐null cells were partially corrected by transduction of the Emx2 gene. Taken together, our results indicate that Emx2 is indeed involved in the transition between resident early progenitors (perhaps stem cells) and more mature precursors capable of migrating out of the ventricular zone, becoming postmitotic and differentiating into the appropriate cell type, and help explain the alterations observed in the brains of knock‐out mice.


Current Medicinal Chemistry | 2007

Ligand-targeted liposomal therapies of neuroblastoma.

Fabio Pastorino; Danilo Marimpietri; Chiara Brignole; Daniela Di Paolo; Gabriella Pagnan; Antonio Daga; Federica Piccardi; Michele Cilli; Theresa M. Allen; Mirco Ponzoni

The central problem in cancer chemotherapy is the severe toxic side effects of anticancer drugs on healthy tissues. The use of liposomes as drug delivery vehicles for antitumour therapeutics has great potential to revolutionise the future of cancer therapy. As tumour architecture causes liposomes to preferentially accumulate at the tumour site, their use as drug carriers results in the localization of a greater amount of the loaded drug at the tumour site, thus improving cancer therapy and reducing the harmful non-specific side effects of chemotherapeutics. In addition, targeting of liposomal anticancer drugs to antigens expressed or over-expressed on tumour cells provides a very efficient system for increasing the therapeutic indices of the drugs. Animal models allow detailed examination of molecular and physiological basis of diseases and offer a frontline testing system for studying the involvement of specific genes and the efficacy of novel therapeutic approaches. Until recently, the most resorted experimental model of paediatric Neuroblastoma (NB) tumour is the subcutaneous xenograft in nude mice. However, the main disadvantage of this animal model is that it does not reflect the metastatic potential of NB cells, ultimately responsible for poor patient survival. A more realistic view of the clinical potential of targeted therapies could be obtained if a tumour model were available that better reflects the growth of advanced NB in children (i.e. large adrenal gland tumours and multiple small metastatic lesions). All current data support this concept and recommend that orthotopic implantation of tumour cells in recipient animals is mandatory for studies of tumour progression, angiogenesis, invasion, and metastasis. This review will focus on the description of the most clinically relevant animal models established to test the efficacy of targeted liposomal anti-tumour formulations for the treatment of Neuroblastoma.


European Journal of Immunology | 2004

DNase I behaves as a transcription factor which modulates Fas expression in human cells

Mara Oliveri; Antonio Daga; Claudio Lunardi; Riccardo Navone; Romano Millo; Antonio Puccetti

DNase I is the major nuclease present in biological fluids and is ubiquitously expressed in mammalian tissues. It is responsible for the removal of DNA from nuclear antigens, and consistently with this function, DNase I‐deficient mice show features of autoimmunity. The enzyme seems also to be involved in apoptosis (programmed cell death). We demonstrate that DNase I is internalized by human cells upon binding mannose 6‐phosphate receptor and gains access into the cells. Following internalization of the enzyme, the cells show an increased surface expression of Fas molecule, a key regulator of apoptosis. Here we show that DNase I up‐regulates fas transcription upon interaction with the fas gene promoter. Moreover, overexpression of the DNase I gene in human cells results in a similar modulation of the fas gene expression. Our data provide the first evidence that the endonuclease DNase I behaves as a transcription factor which selectively regulates cell surface Fas expression in human cells and point towards a fundamental role of DNase I in the regulation of the apoptotic machinery.

Collaboration


Dive into the Antonio Daga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michele Cilli

National Cancer Research Institute

View shared research outputs
Top Co-Authors

Avatar

Chiara Brignole

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabio Pastorino

Istituto Giannina Gaslini

View shared research outputs
Researchain Logo
Decentralizing Knowledge