Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio E. Muruato is active.

Publication


Featured researches published by Antonio E. Muruato.


American Journal of Tropical Medicine and Hygiene | 2016

Characterization of a Novel Murine Model to Study Zika Virus

Shannan L. Rossi; Robert B. Tesh; Sasha R. Azar; Antonio E. Muruato; Kathryn A. Hanley; Albert J. Auguste; Rose M. Langsjoen; Slobodan Paessler; Nikos Vasilakis; Scott C. Weaver

The mosquito-borne Zika virus (ZIKV) is responsible for an explosive ongoing outbreak of febrile illness across the Americas. ZIKV was previously thought to cause only a mild, flu-like illness, but during the current outbreak, an association with Guillain–Barré syndrome and microcephaly in neonates has been detected. A previous study showed that ZIKV requires murine adaptation to generate reproducible murine disease. In our study, a low-passage Cambodian isolate caused disease and mortality in mice lacking the interferon (IFN) alpha receptor (A129 mice) in an age-dependent manner, but not in similarly aged immunocompetent mice. In A129 mice, viremia peaked at ∼107 plaque-forming units/mL by day 2 postinfection (PI) and reached high titers in the spleen by day 1. ZIKV was detected in the brain on day 3 PI and caused signs of neurologic disease, including tremors, by day 6. Robust replication was also noted in the testis. In this model, all mice infected at the youngest age (3 weeks) succumbed to illness by day 7 PI. Older mice (11 weeks) showed signs of illness, viremia, and weight loss but recovered starting on day 8. In addition, AG129 mice, which lack both type I and II IFN responses, supported similar infection kinetics to A129 mice, but with exaggerated disease signs. This characterization of an Asian lineage ZIKV strain in a murine model, and one of the few studies reporting a model of Zika disease and demonstrating age-dependent morbidity and mortality, could provide a platform for testing the efficacy of antivirals and vaccines.


Nature Medicine | 2017

A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models

Chao Shan; Antonio E. Muruato; Bruno T.D. Nunes; Huanle Luo; Xuping Xie; Daniele Barbosa de Almeida Medeiros; Maki Wakamiya; Robert B. Tesh; Alan D. T. Barrett; Tian Wang; Scott C. Weaver; Pedro Fernando da Costa Vasconcelos; Shannan L. Rossi; Pei Yong Shi

Zika virus (ZIKV) infection of pregnant women can cause a wide range of congenital abnormalities, including microcephaly, in the infant, a condition now collectively known as congenital ZIKV syndrome. A vaccine to prevent or significantly attenuate viremia in pregnant women who are residents of or travelers to epidemic or endemic regions is needed to avert congenital ZIKV syndrome, and might also help to suppress epidemic transmission. Here we report on a live-attenuated vaccine candidate that contains a 10-nucleotide deletion in the 3′ untranslated region of the ZIKV genome (10-del ZIKV). The 10-del ZIKV is highly attenuated, immunogenic, and protective in type 1 interferon receptor–deficient A129 mice. Crucially, a single dose of 10-del ZIKV induced sterilizing immunity with a saturated neutralizing antibody titer, which no longer increased after challenge with an epidemic ZIKV, and completely prevented viremia. The immunized mice also developed a robust T cell response. Intracranial inoculation of 1-d-old immunocompetent CD-1 mice with 1 × 104 infectious focus units (IFU) of 10-del ZIKV caused no mortality, whereas infections with 10 IFU of wild-type ZIKV were lethal. Mechanistically, the attenuated virulence of 10-del ZIKV may be due to decreased viral RNA synthesis and increased sensitivity to type-1-interferon inhibition. The attenuated 10-del ZIKV was incapable of infecting mosquitoes after oral feeding of spiked-blood meals, representing an additional safety feature. Collectively, the safety and efficacy results suggest that further development of this promising, live-attenuated ZIKV vaccine candidate is warranted.


Cell | 2017

Vaccine Mediated Protection Against Zika Virus-Induced Congenital Disease

Justin M. Richner; Brett W. Jagger; Chao Shan; Camila R. Fontes; Kimberly A. Dowd; Bin Cao; Sunny Himansu; Elizabeth A. Caine; Bruno T.D. Nunes; Daniele Barbosa de Almeida Medeiros; Antonio E. Muruato; Bryant M. Foreman; Huanle Luo; Tian Wang; Alan D. T. Barrett; Scott C. Weaver; Pedro Fernando da Costa Vasconcelos; Shannan L. Rossi; Giuseppe Ciaramella; Indira U. Mysorekar; Theodore C. Pierson; Pei Yong Shi; Michael S. Diamond

The emergence of Zika virus (ZIKV) and its association with congenital malformations has prompted the rapid development of vaccines. Although efficacy with multiple viral vaccine platforms has been established in animals, no study has addressed protection during pregnancy. We tested in mice two vaccine platforms, a lipid nanoparticle-encapsulated modified mRNA vaccine encoding ZIKV prM and E genes and a live-attenuated ZIKV strain encoding an NS1 protein without glycosylation, for their ability to protect against transmission to the fetus. Vaccinated dams challenged with a heterologous ZIKV strain at embryo day 6 (E6) and evaluated at E13 showed markedly diminished levels of viral RNA in maternal, placental, and fetal tissues, which resulted in protection against placental damage and fetal demise. As modified mRNA and live-attenuated vaccine platforms can restrict in utero transmission of ZIKV in mice, their further development in humans to prevent congenital ZIKV syndrome is warranted.


Mbio | 2017

Understanding Zika Virus Stability and Developing a Chimeric Vaccine through Functional Analysis

Xuping Xie; Yujiao Yang; Antonio E. Muruato; Jing Zou; Chao Shan; Bruno T.D. Nunes; Daniele Barbosa de Almeida Medeiros; Pedro Fernando da Costa Vasconcelos; Scott C. Weaver; Shannan L. Rossi; Pei Yong Shi

ABSTRACT Compared with other flaviviruses, Zika virus (ZIKV) is uniquely associated with congenital diseases in pregnant women. One recent study reported that (i) ZIKV has higher thermostability than dengue virus (DENV [a flavivirus closely related to ZIKV]), which might contribute to the disease outcome; (ii) the higher thermostability of ZIKV could arise from an extended loop structure in domain III of the viral envelope (E) protein and an extra hydrogen-bond interaction between E molecules (V. A. Kostyuchenko, E. X. Y. Lim, S. Zhang, G. Fibriansah, T.-S. Ng, J. S. G. Ooi, J. Shi, and S.-M. Lok, Nature 533:425–428, 2016, https://doi.org/10.1038/nature17994 ). Here we report the functional analysis of the structural information in the context of complete ZIKV and DENV-2 virions. Swapping the prM-E genes between ZIKV and DENV-2 switched the thermostability of the chimeric viruses, identifying the prM-E proteins as the major determinants for virion thermostability. Shortening the extended loop of the E protein by 1 amino acid was lethal for ZIKV assembly/release. Mutations (Q350I and T351V) that abolished the extra hydrogen-bond interaction between the E proteins did not reduce ZIKV thermostability, indicating that the extra interaction does not increase the thermostability. Interestingly, mutant T351V was attenuated in A129 mice defective in type I interferon receptors, even though the virus retained the wild-type thermostability. Furthermore, we found that a chimeric ZIKV with the DENV-2 prM-E and a chimeric DENV-2 with the ZIKV prM-E were highly attenuated in A129 mice; these chimeric viruses were highly immunogenic and protective against DENV-2 and ZIKV challenge, respectively. These results indicate the potential of these chimeric viruses for vaccine development. IMPORTANCE Analysis of a recently observed high-resolution structure of ZIKV led to a hypothesis that its unusual stability may contribute to the associated, unique disease outcomes. Here we performed a functional analysis to demonstrate that viral prM-E genes are the main determinants for the high stability of ZIKV. The extra hydrogen-bond interaction (observed in the high-resolution structure) between ZIKV E proteins did not enhance virion stability, whereas the extended loop of E protein (CD loop in domain III) was essential for ZIKV assembly. More importantly, we found that a chimeric ZIKV with DENV-2 prM-E genes and a chimeric DENV-2 with ZIKV prM-E genes were highly attenuated in A129 mice. Mice immunized with these chimeric viruses generated robust neutralizing antibody responses and were fully protected from DENV-2 and ZIKV challenge, respectively, indicating that these chimeric viruses could be further developed as vaccine candidates. IMPORTANCE Analysis of a recently observed high-resolution structure of ZIKV led to a hypothesis that its unusual stability may contribute to the associated, unique disease outcomes. Here we performed a functional analysis to demonstrate that viral prM-E genes are the main determinants for the high stability of ZIKV. The extra hydrogen-bond interaction (observed in the high-resolution structure) between ZIKV E proteins did not enhance virion stability, whereas the extended loop of E protein (CD loop in domain III) was essential for ZIKV assembly. More importantly, we found that a chimeric ZIKV with DENV-2 prM-E genes and a chimeric DENV-2 with ZIKV prM-E genes were highly attenuated in A129 mice. Mice immunized with these chimeric viruses generated robust neutralizing antibody responses and were fully protected from DENV-2 and ZIKV challenge, respectively, indicating that these chimeric viruses could be further developed as vaccine candidates.


Nature Communications | 2017

A single-dose live-attenuated vaccine prevents Zika virus pregnancy transmission and testis damage

Chao Shan; Antonio E. Muruato; Brett W. Jagger; Justin M. Richner; Bruno T.D. Nunes; Daniele Barbosa de Almeida Medeiros; Xuping Xie; Jannyce G.C. Nunes; Kaitlyn M. Morabito; Wing Pui Kong; Theodore C. Pierson; Alan D. T. Barrett; Scott C. Weaver; Shannan L. Rossi; Pedro Fernando da Costa Vasconcelos; Barney S. Graham; Michael S. Diamond; Pei Yong Shi

Zika virus infection during pregnancy can cause congenital abnormities or fetal demise. The persistence of Zika virus in the male reproductive system poses a risk of sexual transmission. Here we demonstrate that live-attenuated Zika virus vaccine candidates containing deletions in the 3′ untranslated region of the Zika virus genome (ZIKV-3′UTR-LAV) prevent viral transmission during pregnancy and testis damage in mice, as well as infection of nonhuman primates. After a single-dose vaccination, pregnant mice challenged with Zika virus at embryonic day 6 and evaluated at embryonic day 13 show markedly diminished levels of viral RNA in maternal, placental, and fetal tissues. Vaccinated male mice challenged with Zika virus were protected against testis infection, injury, and oligospermia. A single immunization of rhesus macaques elicited a rapid and robust antibody response, conferring complete protection upon challenge. Furthermore, the ZIKV-3′UTR-LAV vaccine candidates have a desirable safety profile. These results suggest that further development of ZIKV-3′UTR-LAV is warranted for humans.Zika virus infection can result in congenital disorders and cause disease in adults, and there is currently no approved vaccine. Here Shan et al. show that a single dose of a live-attenuated Zika vaccine prevents infection, testis damage and transmission to the fetus during pregnancy in different animal models.


Cell Reports | 2017

Functional Analysis of Glycosylation of Zika Virus Envelope Protein

Camila R. Fontes-Garfias; Chao Shan; Huanle Luo; Antonio E. Muruato; Daniele Barbosa de Almeida Medeiros; Elizabeth Mays; Xuping Xie; Jing Zou; Christopher M. Roundy; Maki Wakamiya; Shannan L. Rossi; Tian Wang; Scott C. Weaver; Pei Yong Shi

Zika virus (ZIKV) infection causes devastating congenital abnormities and Guillain-Barré syndrome. The ZIKV envelope (E) protein is responsible for viral entry and represents a major determinant for viral pathogenesis. Like other flaviviruses, the ZIKV E protein is glycosylated at amino acid N154. To study the function of E glycosylation, we generated a recombinant N154Q ZIKV that lacks the E glycosylation and analyzed the mutant virus in mammalian and mosquito hosts. In mouse models, the mutant was attenuated, as evidenced by lower viremia, decreased weight loss, and no mortality; however, knockout of E glycosylation did not significantly affect neurovirulence. Mice immunized with the mutant virus developed a robust neutralizing antibody response and were completely protected from wild-type ZIKV challenge. In mosquitoes, the mutant virus exhibited diminished oral infectivity for the Aedes aegypti vector. Collectively, the results demonstrate that E glycosylation is critical for ZIKV infection of mammalian and mosquito hosts.


Nature Communications | 2018

An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction

Hongjie Xia; Huanle Luo; Chao Shan; Antonio E. Muruato; Bruno T.D. Nunes; Daniele Barbosa de Almeida Medeiros; Jing Zou; Xuping Xie; Maria Isabel Giraldo; Pedro Fernando da Costa Vasconcelos; Scott C. Weaver; Tian Wang; Ricardo Rajsbaum; Pei Yong Shi

Virus–host interactions determine an infection outcome. The Asian lineage of Zika virus (ZIKV), responsible for the recent epidemics, has fixed a mutation in the NS1 gene after 2012 that enhances mosquito infection. Here we report that the same mutation confers NS1 to inhibit interferon-β induction. This mutation enables NS1 binding to TBK1 and reduces TBK1 phosphorylation. Engineering the mutation into a pre-epidemic ZIKV strain debilitates the virus for interferon-β induction; reversing the mutation in an epidemic ZIKV strain invigorates the virus for interferon-β induction; these mutational effects are lost in IRF3-knockout cells. Additionally, ZIKV NS2A, NS2B, NS4A, NS4B, and NS5 can also suppress interferon-β production through targeting distinct components of the RIG-I pathway; however, for these proteins, no antagonistic difference is observed among various ZIKV strains. Our results support the mechanism that ZIKV has accumulated mutation(s) that increases the ability to evade immune response and potentiates infection and epidemics.The Asian lineage of Zika virus (ZIKV) has acquired a mutation in NS1 that enhances mosquito infection. Here, Xia et al. show that the same mutation interferes with interferon production through interaction with TBK1 and affects ZIKV replication in mice.


EBioMedicine | 2017

A cDNA Clone-Launched Platform for High-Yield Production of Inactivated Zika Vaccine

Yujiao Yang; Chao Shan; Jing Zou; Antonio E. Muruato; Diniz Nunes Bruno; Barbosa de Almeida Medeiros Daniele; Pedro Fernando da Costa Vasconcelos; Shannan L. Rossi; Scott C. Weaver; Xuping Xie; Pei Yong Shi

A purified inactivated vaccine (PIV) using the Zika virus (ZIKV) Puerto Rico strain PRVABC59 showed efficacy in monkeys, and is currently in a phase I clinical trial. High-yield manufacture of this PIV is essential for its development and vaccine access. Here we report an infectious cDNA clone-launched platform to maximize its yield. A single NS1 protein substitution (K265E) was identified to increase ZIKV replication on Vero cells (a cell line approved for vaccine production) for both Cambodian FSS13025 and Puerto Rico PRVABC59 strains. The NS1 mutation did not affect viral RNA synthesis, but significantly increased virion assembly through an increased interaction between NS1 and NS2A (a known regulator of flavivirus assembly). The NS1 mutant virus retained wild-type virulence in the A129 mouse model, but decreased its competence to infect Aedes aegypti mosquitoes. To further increase virus yield, we constructed an infectious cDNA clone of the clinical trial PIV strain PRVABC59 containing three viral replication-enhancing mutations (NS1 K265E, prM H83R, and NS3 S356F). The mutant cDNA clone produced > 25-fold more ZIKV than the wild-type parent on Vero cells. This cDNA clone-launched manufacture platform has the advantages of higher virus yield, shortened manufacture time, and minimized chance of contamination.


PLOS Neglected Tropical Diseases | 2016

Molecular Virologic and Clinical Characteristics of a Chikungunya Fever Outbreak in La Romana, Dominican Republic, 2014

Rose M. Langsjoen; Rebecca J. Rubinstein; Tiffany F. Kautz; Albert J. Auguste; Jesse H. Erasmus; Liddy Kiaty-Figueroa; Renessa Gerhardt; David Lin; Kumar Hari; Ravi Jain; Nicolas Ruiz; Antonio E. Muruato; Jael Silfa; Franklin Bido; Matthew Dacso; Scott C. Weaver

Since emerging in Saint Martin in 2013, chikungunya virus (CHIKV), an alphavirus transmitted by the Aedes aegypti mosquito, has infected approximately two million individuals in the Americas, with over 500,000 reported cases in the Dominican Republic (DR). CHIKV-infected patients typically present with a febrile syndrome including polyarthritis/polyarthralgia, and a macropapular rash, similar to those infected with dengue and Zika viruses, and malaria. Nevertheless, many Dominican cases are unconfirmed due to the unavailability and high cost of laboratory testing and the absence of specific treatment for CHIKV infection. To obtain a more accurate representation of chikungunya fever (CHIKF) clinical signs and symptoms, and confirm the viral lineage responsible for the DR CHIKV outbreak, we tested 194 serum samples for CHIKV RNA and IgM antibodies from patients seen in a hospital in La Romana, DR using quantitative RT-PCR and IgM capture ELISA, and performed retrospective chart reviews. RNA and antibodies were detected in 49% and 24.7% of participants, respectively. Sequencing revealed that the CHIKV strain responsible for the La Romana outbreak belonged to the Asian/American lineage and grouped phylogenetically with recent Mexican and Trinidadian isolates. Our study shows that, while CHIKV-infected individuals were infrequently diagnosed with CHIKF, uninfected patients were never falsely diagnosed with CHIKF. Participants testing positive for CHIKV RNA were more likely to present with arthralgia, although it was reported in just 20.0% of CHIKF+ individuals. High percentages of respiratory (19.6%) signs and symptoms, especially among children, were noted, though it was not possible to determine whether individuals infected with CHIKV were co-infected with other pathogens. These results suggest that CHIKV may have been underdiagnosed during this outbreak, and that CHIKF should be included in differential diagnoses of diverse undifferentiated febrile syndromes in the Americas.


EBioMedicine | 2018

A single-dose plasmid-launched live-attenuated Zika vaccine induces protective immunity

Jing Zou; Xuping Xie; Huanle Luo; Chao Shan; Antonio E. Muruato; Scott C. Weaver; Tian Wang; Pei Yong Shi

Background Vaccines are the most effective means to fight and eradicate infectious diseases. Live-attenuated vaccines (LAV) usually have the advantages of single dose, rapid onset of immunity, and durable protection. DNA vaccines have the advantages of chemical stability, ease of production, and no cold chain requirement. The ability to combine the strengths of LAV and DNA vaccines may transform future vaccine development by eliminating cold chain and cell culture with the potential for adventitious agents. Methods A DNA-launched LAV was developed for ZIKV virus (ZIKV), a pathogen that recently caused a global public health emergency. The cDNA copy of a ZIKV LAV genome was engineered into a DNA plasmid. The DNA-LAV plasmid was delivered into mice using a clinically proven device TriGrid™ to launch the replication of LAV. Findings A single-dose immunization as low as 0.5 μg of DNA-LAV plasmid conferred 100% seroconversion in A129 mice. All seroconverted mice developed sterilizing immunity, as indicated by no detectable infectious viruses and no increase of neutralizing antibody titers after ZIKV challenge. The immunization also elicited robust T cell responses. In pregnant mice, the DNA-LAV vaccination fully protected against ZIKV-induced disease and maternal-to-fetal transmission. High levels of neutralizing activities were detected in fetal serum, indicating maternal-to-fetal humoral transfer. In male mice, a single-dose vaccination completely prevented testis infection, injury, and oligospermia. Interpretation The remarkable simplicity and potency of ZIKV DNA-LAV warrant further development of this vaccine candidate. The DNA-LAV approach may serve as a universal vaccine platform for other plus-sense RNA viruses. Fund National Institute of Health, Kleberg Foundation, Centers for Disease Control and Prevention, University of Texas Medical Branch.

Collaboration


Dive into the Antonio E. Muruato's collaboration.

Top Co-Authors

Avatar

Scott C. Weaver

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Chao Shan

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Pei Yong Shi

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Shannan L. Rossi

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Xuping Xie

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huanle Luo

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Jing Zou

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Tian Wang

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge