Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where António F. Ambrósio is active.

Publication


Featured researches published by António F. Ambrósio.


Neurochemical Research | 2002

Mechanisms of Action of Carbamazepine and Its Derivatives, Oxcarbazepine, BIA 2-093, and BIA 2-024*

António F. Ambrósio; Patrício Soares-da-Silva; Caetana M. Carvalho; Arsélio P. Carvalho

Carbamazepine (CBZ) has been extensively used in the treatment of epilepsy, as well as in the treatment of neuropathic pain and affective disorders. However, the mechanisms of action of this drug are not completely elucidated and are still a matter of debate. Since CBZ is not very effective in some epileptic patients and may cause several adverse effects, several antiepileptic drugs have been developed by structural variation of CBZ, such as oxcarbazepine (OXC), which is used in the treatment of epilepsy since 1990. (S)-(−)-10-acetoxy-10,11-dihydro-5H-dibenz[b,f]azepine-5-carboxamide (BIA 2-093) and 10,11-dihydro-10-hydroxyimino-5H-dibenz[b,f]azepine-5-carboxamide (BIA 2-024), which were recently developed by BIAL, are new putative antiepileptic drugs, with some improved properties. In this review, we will focus on the mechanisms of action of CBZ and its derivatives, OXC, BIA 2-093 and BIA 2-024. The available data indicate that the anticonvulsant efficacy of these AEDs is mainly due to the inhibition of sodium channel activity.


Diabetes | 2010

TNF-α signals through PKCζ/NF-κB to alter the tight junction complex and increase retinal endothelial cell permeability

Célia A. Aveleira; Cheng Mao Lin; Steven F. Abcouwer; António F. Ambrósio; David A. Antonetti

OBJECTIVE Tumor necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1β) are elevated in the vitreous of diabetic patients and in retinas of diabetic rats associated with increased retinal vascular permeability. However, the molecular mechanisms underlying retinal vascular permeability induced by these cytokines are poorly understood. In this study, the effects of IL-1β and TNF-α on retinal endothelial cell permeability were compared and the molecular mechanisms by which TNF-α increases cell permeability were elucidated. RESEARCH DESIGN AND METHODS Cytokine-induced retinal vascular permeability was measured in bovine retinal endothelial cells (BRECs) and rat retinas. Western blotting, quantitative real-time PCR, and immunocytochemistry were performed to determine tight junction protein expression and localization. RESULTS IL-1β and TNF-α increased BREC permeability, and TNF-α was more potent. TNF-α decreased the protein and mRNA content of the tight junction proteins ZO-1 and claudin-5 and altered the cellular localization of these tight junction proteins. Dexamethasone prevented TNF-α–induced cell permeability through glucocorticoid receptor transactivation and nuclear factor-kappaB (NF-κB) transrepression. Preventing NF-κB activation with an inhibitor κB kinase (IKK) chemical inhibitor or adenoviral overexpression of inhibitor κB alpha (IκBα) reduced TNF-α–stimulated permeability. Finally, inhibiting protein kinase C zeta (PKCζ) using both a peptide and a novel chemical inhibitor reduced NF-κB activation and completely prevented the alterations in the tight junction complex and cell permeability induced by TNF-α in cell culture and rat retinas. CONCLUSIONS These results suggest that PKCζ may provide a specific therapeutic target for the prevention of vascular permeability in retinal diseases characterized by elevated TNF-α, including diabetic retinopathy.


Neuropharmacology | 1999

Carbamazepine inhibits L-type Ca2+ channels in cultured rat hippocampal neurons stimulated with glutamate receptor agonists

António F. Ambrósio; Ana P. Silva; João O. Malva; Patrício Soares-da-Silva; Arsélio P. Carvalho; Caetana M. Carvalho

In order to better understand the mechanism(s) of action of carbamazepine (CBZ), we studied its effects on the increase in [Ca2+]i and [Na+]i stimulated by glutamate ionotropic receptor agonists, in cultured rat hippocampal neurons, as followed by indo- or SBFI fluorescence, respectively. CBZ inhibited the increase in [Ca2+]i stimulated either by glutamate, kainate, alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA), or N-methyl-D-aspartate (NMDA), in a concentration-dependent manner. In order to discriminate the effects of CBZ on the activation of glutamate receptors from possible effects on Ca2+ channels, we determined the inhibitory effects of Ca2+ channel blockers on [Ca2+]i changes in the absence or in the presence of CBZ. The presence of 1 microM nitrendipine, 0.5 microM omega-conotoxin GVIA (omega-CgTx GVIA), or of both blockers, inhibited the kainate-stimulated increase in [Ca2+]i by 51.6, 32.9 or 68.7%, respectively. In the presence of both 100 microM CBZ and nitrendipine, the inhibition was similar (54.1%) to that obtained with nitrendipine alone, but in the presence of both CBZ and omega-CgTx GVIA, the inhibition was greater (54%) than that caused by omega-CgTx GVIA alone. However, CBZ did not inhibit the increase in [Na+]i stimulated by the glutamate receptor agonists, but inhibited the increase in [Na+]i due to veratridine. Tetrodotoxin, or MK-801, did not inhibit the influx of Na+ stimulated by kainate, indicating that Na+ influx occurs mainly through the glutamate ionotropic non-NMDA receptors. Moreover, LY 303070, a specific AMPA receptor antagonist, inhibited the [Na+]i response to kainate or AMPA by about 70 or 80%, respectively, suggesting that AMPA receptors are mainly involved. Taken together, the results suggest that CBZ inhibits L-type Ca2+ channels and Na+ channels, but does not inhibit activation of glutamate ionotropic receptors.


Brain Research | 2011

Methamphetamine transiently increases the blood–brain barrier permeability in the hippocampus: Role of tight junction proteins and matrix metalloproteinase-9

Tânia Martins; Sofia Baptista; Joana Gonçalves; Ermelindo C. Leal; Nuno Milhazes; Fernanda Borges; Carlos Ribeiro; O. Quintela; Elena Lendoiro; Manuel López-Rivadulla; António F. Ambrósio; Ana P. Silva

Methamphetamine (METH) is a powerful stimulant drug of abuse that has steadily gained popularity worldwide. It is known that METH is highly neurotoxic and causes irreversible damage of brain cells leading to neurological and psychiatric abnormalities. Recent studies suggested that METH-induced neurotoxicity might also result from its ability to compromise blood-brain barrier (BBB) function. Due to the crucial role of BBB in the maintenance of brain homeostasis and protection against toxic molecules and pathogenic organisms, its dysfunction could have severe consequences. In this study, we investigated the effect of an acute high dose of METH (30mg/kg) on BBB permeability after different time points and in different brain regions. For that, young adult mice were sacrificed 1h, 24h or 72h post-METH administration. METH increased BBB permeability, but this effect was detected only at 24h after administration, being therefore a transitory effect. Interestingly, we also found that the hippocampus was the most susceptible brain region to METH, comparing to frontal cortex and striatum. Moreover, in an attempt to identify the key players in METH-induced BBB dysfunction we further investigated potential alterations in tight junction (TJ) proteins and matrix metalloproteinase-9 (MMP-9). METH was able to decrease the protein levels of zonula occludens (ZO)-1, claudin-5 and occludin in the hippocampus 24h post-injection, and increased the activity and immunoreactivity of MMP-9. The pre-treatment with BB-94 (30mg/kg), a matrix metalloproteinase inhibitor, prevented the METH-induced increase in MMP-9 immunoreactivity in the hippocampus. Overall, the present data demonstrate that METH transiently increases the BBB permeability in the hippocampus, which can be explained by alterations on TJ proteins and MMP-9.


Diabetes | 2010

Calcium dobesilate inhibits the alterations in tight junction proteins and leukocyte adhesion to retinal endothelial cells induced by diabetes

Ermelindo C. Leal; João Martins; Paula Voabil; Joana Liberal; Carlo Chiavaroli; Jacques Bauer; José Cunha-Vaz; António F. Ambrósio

OBJECTIVE Calcium dobesilate (CaD) has been used in the treatment of diabetic retinopathy in the last decades, but its mechanisms of action are not elucidated. CaD is able to correct the excessive vascular permeability in the retina of diabetic patients and in experimental diabetes. We investigated the molecular and cellular mechanisms underlying the protective effects of CaD against the increase in blood–retinal barrier (BRB) permeability induced by diabetes. RESEARCH DESIGN AND METHODS Wistar rats were divided into three groups: controls, streptozotocin-induced diabetic rats, and diabetic rats treated with CaD. The BRB breakdown was evaluated using Evans blue. The content or distribution of tight junction proteins (occludin, claudin-5, and zonula occluden-1 [ZO-1]), intercellular adhesion molecule-1 (ICAM-1), and p38 mitogen-activated protein kinase (p38 MAPK) was evaluated by Western blotting and immunohistochemistry. Leukocyte adhesion was evaluated in retinal vessels and in vitro. Oxidative stress was evaluated by the detection of oxidized carbonyls and tyrosine nitration. NF-κB activation was measured by enzyme-linked immunosorbent assay. RESULTS Diabetes increased the BRB permeability and retinal thickness. Diabetes also decreased occludin and claudin-5 levels and altered the distribution of ZO-1 and occludin in retinal vessels. These changes were inhibited by CaD treatment. CaD also inhibited the increase in leukocyte adhesion to retinal vessels or endothelial cells and in ICAM-1 levels, induced by diabetes or elevated glucose. Moreover, CaD decreased oxidative stress and p38 MAPK and NF-κB activation caused by diabetes. CONCLUSIONS CaD prevents the BRB breakdown induced by diabetes, by restoring tight junction protein levels and organization and decreasing leukocyte adhesion to retinal vessels. The protective effects of CaD are likely to involve the inhibition of p38 MAPK and NF-κB activation, possibly through the inhibition of oxidative/nitrosative stress.


European Journal of Pharmacology | 1997

Inhibition of N-, P/Q- and other types of Ca2+ channels in rat hippocampal nerve terminals by the adenosine A1 receptor

António F. Ambrósio; João O. Malva; Arsélio P. Carvalho; Caetana M. Carvalho

The effects of the adenosine A1 receptor agonist, N6-cyclopentyladenosine (CPA), on both the increase in intracellular free Ca2+ concentration ([Ca2+]i) and on the release of endogenous glutamate in rat hippocampal synaptosomes were studied. The inhibitory effect of CPA on the increase in [Ca2+]i stimulated with 4-aminopyridine was neutralized by the adenosine A1 receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). The inhibitory effect of CPA was greater in synaptosomes from the CA1 subregion than in whole hippocampal synaptosomes. The inhibitory effects of both CPA and of the Ca2+ channel blockers, omega-conotoxin GVIA, omega-conotoxin MVIIC or omega-conotoxin GVIA plus omega-conotoxin MVIIC, were greater than those caused by the Ca2+ channel blockers. The release of endogenous glutamate was inhibited by 41% by CPA. The inhibition observed when CPA and omega-conotoxin GVIA or CPA and omega-conotoxin MVIIC were present was also greater than the inhibition by the Ca2+ channel blockers alone. The presence of both omega-conotoxin GVIA and omega-conotoxin MVIIC did not completely inhibit the release of glutamate, and CPA significantly enhanced this inhibition. The membrane potential and the accumulation of [3H]tetraphenylphosphonium of polarized or depolarized synaptosomes was not affected by CPA, suggesting that adenosine did not increase potassium conductances. The present results suggest that, in hippocampal glutamatergic nerve terminals, adenosine A1 receptor activation partly inhibits P/Q- and other non-identified types of Ca2+ channels.


PLOS ONE | 2012

Heme Oxygenase-1 Protects Retinal Endothelial Cells against High Glucose- and Oxidative/Nitrosative Stress-Induced Toxicity

Áurea F. Castilho; Célia A. Aveleira; Ermelindo C. Leal; Núria F. Simões; Carolina R. Fernandes; Rita I. Meirinhos; Filipa I. Baptista; António F. Ambrósio

Diabetic retinopathy is a leading cause of visual loss and blindness, characterized by microvascular dysfunction. Hyperglycemia is considered the major pathogenic factor for the development of diabetic retinopathy and is associated with increased oxidative/nitrosative stress in the retina. Since heme oxygenase-1 (HO-1) is an enzyme with antioxidant and protective properties, we investigated the potential protective role of HO-1 in retinal endothelial cells exposed to high glucose and oxidative/nitrosative stress conditions. Retinal endothelial cells were exposed to elevated glucose, nitric oxide (NO) and hydrogen peroxide (H2O2). Cell viability and apoptosis were assessed by MTT assay, Hoechst staining, TUNEL assay and Annexin V labeling. The production of reactive oxygen species (ROS) was detected by the oxidation of 2′,7′-dichlorodihydrofluorescein diacetate. The content of HO-1 was assessed by immunobloting and immunofluorescence. HO activity was determined by bilirubin production. Long-term exposure (7 days) of retinal endothelial cells to elevated glucose decreased cell viability and had no effect on HO-1 content. However, a short-time exposure (24 h) to elevated glucose did not alter cell viability, but increased both the levels of intracellular ROS and HO-1 content. Moreover, the inhibition of HO with SnPPIX unmasked the toxic effect of high glucose and revealed the protection conferred by HO-1. Oxidative/nitrosative stress conditions increased cell death and HO-1 protein levels. These effects of elevated glucose and HO inhibition on cell death were confirmed in primary endothelial cells (HUVECs). When cells were exposed to oxidative/nitrosative stress conditions there was also an increase in retinal endothelial cell death and HO-1 content. The inhibition of HO enhanced ROS production and the toxic effect induced by exposure to H2O2 and NOC-18 (NO donor). Overexpression of HO-1 prevented the toxic effect induced by H2O2 and NOC-18. In conclusion, HO-1 exerts a protective effect in retinal endothelial cells exposed to hyperglycemic and oxidative/nitrosative stress conditions.


European Journal of Neuroscience | 2000

Role of desensitization of AMPA receptors on the neuronal viability and on the [Ca2+]i changes in cultured rat hippocampal neurons

António F. Ambrósio; Ana P. Silva; João O. Malva; José F. Mesquita; Arsélio P. Carvalho; Caetana M. Carvalho

We investigated the role of desensitization of α‐amino‐3‐hydroxy‐5‐methyl‐isoxazole‐4‐propionate (AMPA) receptors on the neurotoxicity and on the [Ca2+]i changes induced by kainate or by AMPA in cultured rat hippocampal neurons. The neuronal viability was evaluated either by the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay, or by analysis of cell morphology. Short‐term exposure of the neurons to kainate or AMPA (30 min) was not toxic, but the exposure for 24 h to the excitotoxic drugs caused a concentration‐dependent neurotoxic effect which was prevented by LY 303070, a noncompetitive AMPA receptor antagonist. In the presence of cyclothiazide (CTZ), kainate or AMPA was toxic (30 min exposure), or the toxic effect was significantly enhanced (24 h exposure), but in this case LY 303070 did not completely protect the cells against kainate‐induced toxicity. The alterations in the [Ca2+]i caused by kainate or AMPA showed a great cell‐to‐cell variability. LY 303070 completely or partially inhibited the responses stimulated by kainate. CTZ differentially affected the responses evoked by kainate or AMPA. In the majority of hippocampal neurons, CTZ did not potentiate, or only slightly potentiated, the kainate‐stimulated responses but in 11% of neurons there was a great potentiation. In AMPA‐stimulated neurons, the responses were slightly or greatly potentiated in the majority of neurons, but not in all of them. The results show that AMPA and kainate may be toxic, depending on the time of exposure and on the blockade of the desensitization of the AMPA receptors. Overall, our results clearly show that there exist different populations of hippocampal neurons with different sensitivities to kainate, AMPA, CTZ and LY 303070. Moreover, the effects of CTZ on both [Ca2+]i alterations and neurotoxicity are not fully correlated.


Stem Cells | 2010

Nitric oxide stimulates the proliferation of neural stem cells bypassing the epidermal growth factor receptor.

Bruno P. Carreira; Maria Inês Morte; Ângela S. Inácio; Gabriel Nascimento Costa; Joana Rosmaninho-Salgado; Fabienne Agasse; Anália do Carmo; Patrícia Couceiro; Patrik Brundin; António F. Ambrósio; Caetana M. Carvalho; Inês M. Araújo

Nitric oxide (NO) was described to inhibit the proliferation of neural stem cells. Some evidence suggests that NO, under certain conditions, can also promote cell proliferation, although the mechanisms responsible for a potential proliferative effect of NO in neural stem cells have remained unaddressed. In this work, we investigated and characterized the proliferative effect of NO in cell cultures obtained from the mouse subventricular zone. We found that the NO donor NOC‐18 (10 μM) increased cell proliferation, whereas higher concentrations (100 μM) inhibited cell proliferation. Increased cell proliferation was detected rapidly following exposure to NO and was prevented by blocking the mitogen‐activated kinase (MAPK) pathway, independently of the epidermal growth factor (EGF) receptor. Downstream of the EGF receptor, NO activated p21Ras and the MAPK pathway, resulting in a decrease in the nuclear presence of the cyclin‐dependent kinase inhibitor 1, p27KIP1, allowing for cell cycle progression. Furthermore, in a mouse model that shows increased proliferation of neural stem cells in the hippocampus following seizure injury, we observed that the absence of inducible nitric oxide synthase (iNOS−/− mice) prevented the increase in cell proliferation observed following seizures in wild‐type mice, showing that NO from iNOS origin is important for increased cell proliferation following a brain insult. Overall, we show that NO is able to stimulate the proliferation of neural stem cells bypassing the EGF receptor and promoting cell division. Moreover, under pathophysiological conditions in vivo, NO from iNOS origin also promotes proliferation in the hippocampus. STEM CELLS 2010;28:1219–1230


Epilepsia | 2004

Neurotoxicity induced by antiepileptic drugs in cultured hippocampal neurons: a comparative study between carbamazepine, oxcarbazepine, and two new putative antiepileptic drugs, BIA 2-024 and BIA 2-093.

Inês M. Araújo; António F. Ambrósio; Ermelindo C. Leal; Maria J. Verdasca; João O. Malva; Patrício Soares-da-Silva; Arsélio P. Carvalho; Caetana M. Carvalho

Summary:  Purpose: Newly designed antiepileptic drugs (AEDs) are being evaluated for their efficacy in preventing seizures and for their toxic profiles. We investigated and compared the toxic effects of two dibenz[b,f]azepine derivatives with anticonvulsant activity, 10,11‐dihydro‐10‐hydroxyimino‐5H‐dibenz[b,f]azepine‐5‐carboxamide (BIA2‐024) and (S)‐(‐)‐10‐acetoxy‐10,11‐dihydro‐5H‐dibenz[b,f] azepine‐5‐carboxamide (BIA2‐093), with the structurally related compounds carbamazepine (CBZ) and oxcarbazepine (OXC), both in current use for the treatment of epilepsy.

Collaboration


Dive into the António F. Ambrósio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge