Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ermelindo C. Leal is active.

Publication


Featured researches published by Ermelindo C. Leal.


Diabetes | 2012

Mechanisms Involved in the Development and Healing of Diabetic Foot Ulceration

Thanh Dinh; Francesco Tecilazich; Antonios Kafanas; John Doupis; Charalambos Gnardellis; Ermelindo C. Leal; Ana Tellechea; Leena Pradhan; Thomas E. Lyons; John M. Giurini; Aristidis Veves

We examined the role of vascular function and inflammation in the development and failure to heal diabetic foot ulcers (DFUs). We followed 104 diabetic patients for a period of 18.4 ± 10.8 months. At the beginning of the study, we evaluated vascular reactivity and serum inflammatory cytokines and growth factors. DFUs developed in 30 (29%) patients. DFU patients had more severe neuropathy, higher white blood cell count, and lower endothelium-dependent and -independent vasodilation in the macrocirculation. Complete ulcer healing was achieved in 16 (53%) patients, whereas 13 (47%) patients did not heal. There were no differences in the above parameters between the two groups, but patients whose ulcers failed to heal had higher tumor necrosis factor-α, monocyte chemoattractant protein-1, matrix metallopeptidase 9 (MMP-9), and fibroblast growth factor 2 serum levels when compared with those who healed. Skin biopsy analysis showed that compared with control subjects, diabetic patients had increased immune cell infiltration, expression of MMP-9, and protein tyrosine phosphatase-1B (PTP1B), which negatively regulates the signaling of insulin, leptin, and growth factors. We conclude that increased inflammation, expression of MMP-9, PTP1B, and aberrant growth factor levels are the main factors associated with failure to heal DFUs. Targeting these factors may prove helpful in the management of DFUs.


Brain Research | 2011

Methamphetamine transiently increases the blood–brain barrier permeability in the hippocampus: Role of tight junction proteins and matrix metalloproteinase-9

Tânia Martins; Sofia Baptista; Joana Gonçalves; Ermelindo C. Leal; Nuno Milhazes; Fernanda Borges; Carlos Ribeiro; O. Quintela; Elena Lendoiro; Manuel López-Rivadulla; António F. Ambrósio; Ana P. Silva

Methamphetamine (METH) is a powerful stimulant drug of abuse that has steadily gained popularity worldwide. It is known that METH is highly neurotoxic and causes irreversible damage of brain cells leading to neurological and psychiatric abnormalities. Recent studies suggested that METH-induced neurotoxicity might also result from its ability to compromise blood-brain barrier (BBB) function. Due to the crucial role of BBB in the maintenance of brain homeostasis and protection against toxic molecules and pathogenic organisms, its dysfunction could have severe consequences. In this study, we investigated the effect of an acute high dose of METH (30mg/kg) on BBB permeability after different time points and in different brain regions. For that, young adult mice were sacrificed 1h, 24h or 72h post-METH administration. METH increased BBB permeability, but this effect was detected only at 24h after administration, being therefore a transitory effect. Interestingly, we also found that the hippocampus was the most susceptible brain region to METH, comparing to frontal cortex and striatum. Moreover, in an attempt to identify the key players in METH-induced BBB dysfunction we further investigated potential alterations in tight junction (TJ) proteins and matrix metalloproteinase-9 (MMP-9). METH was able to decrease the protein levels of zonula occludens (ZO)-1, claudin-5 and occludin in the hippocampus 24h post-injection, and increased the activity and immunoreactivity of MMP-9. The pre-treatment with BB-94 (30mg/kg), a matrix metalloproteinase inhibitor, prevented the METH-induced increase in MMP-9 immunoreactivity in the hippocampus. Overall, the present data demonstrate that METH transiently increases the BBB permeability in the hippocampus, which can be explained by alterations on TJ proteins and MMP-9.


Diabetes | 2010

Calcium dobesilate inhibits the alterations in tight junction proteins and leukocyte adhesion to retinal endothelial cells induced by diabetes

Ermelindo C. Leal; João Martins; Paula Voabil; Joana Liberal; Carlo Chiavaroli; Jacques Bauer; José Cunha-Vaz; António F. Ambrósio

OBJECTIVE Calcium dobesilate (CaD) has been used in the treatment of diabetic retinopathy in the last decades, but its mechanisms of action are not elucidated. CaD is able to correct the excessive vascular permeability in the retina of diabetic patients and in experimental diabetes. We investigated the molecular and cellular mechanisms underlying the protective effects of CaD against the increase in blood–retinal barrier (BRB) permeability induced by diabetes. RESEARCH DESIGN AND METHODS Wistar rats were divided into three groups: controls, streptozotocin-induced diabetic rats, and diabetic rats treated with CaD. The BRB breakdown was evaluated using Evans blue. The content or distribution of tight junction proteins (occludin, claudin-5, and zonula occluden-1 [ZO-1]), intercellular adhesion molecule-1 (ICAM-1), and p38 mitogen-activated protein kinase (p38 MAPK) was evaluated by Western blotting and immunohistochemistry. Leukocyte adhesion was evaluated in retinal vessels and in vitro. Oxidative stress was evaluated by the detection of oxidized carbonyls and tyrosine nitration. NF-κB activation was measured by enzyme-linked immunosorbent assay. RESULTS Diabetes increased the BRB permeability and retinal thickness. Diabetes also decreased occludin and claudin-5 levels and altered the distribution of ZO-1 and occludin in retinal vessels. These changes were inhibited by CaD treatment. CaD also inhibited the increase in leukocyte adhesion to retinal vessels or endothelial cells and in ICAM-1 levels, induced by diabetes or elevated glucose. Moreover, CaD decreased oxidative stress and p38 MAPK and NF-κB activation caused by diabetes. CONCLUSIONS CaD prevents the BRB breakdown induced by diabetes, by restoring tight junction protein levels and organization and decreasing leukocyte adhesion to retinal vessels. The protective effects of CaD are likely to involve the inhibition of p38 MAPK and NF-κB activation, possibly through the inhibition of oxidative/nitrosative stress.


PLOS ONE | 2012

Heme Oxygenase-1 Protects Retinal Endothelial Cells against High Glucose- and Oxidative/Nitrosative Stress-Induced Toxicity

Áurea F. Castilho; Célia A. Aveleira; Ermelindo C. Leal; Núria F. Simões; Carolina R. Fernandes; Rita I. Meirinhos; Filipa I. Baptista; António F. Ambrósio

Diabetic retinopathy is a leading cause of visual loss and blindness, characterized by microvascular dysfunction. Hyperglycemia is considered the major pathogenic factor for the development of diabetic retinopathy and is associated with increased oxidative/nitrosative stress in the retina. Since heme oxygenase-1 (HO-1) is an enzyme with antioxidant and protective properties, we investigated the potential protective role of HO-1 in retinal endothelial cells exposed to high glucose and oxidative/nitrosative stress conditions. Retinal endothelial cells were exposed to elevated glucose, nitric oxide (NO) and hydrogen peroxide (H2O2). Cell viability and apoptosis were assessed by MTT assay, Hoechst staining, TUNEL assay and Annexin V labeling. The production of reactive oxygen species (ROS) was detected by the oxidation of 2′,7′-dichlorodihydrofluorescein diacetate. The content of HO-1 was assessed by immunobloting and immunofluorescence. HO activity was determined by bilirubin production. Long-term exposure (7 days) of retinal endothelial cells to elevated glucose decreased cell viability and had no effect on HO-1 content. However, a short-time exposure (24 h) to elevated glucose did not alter cell viability, but increased both the levels of intracellular ROS and HO-1 content. Moreover, the inhibition of HO with SnPPIX unmasked the toxic effect of high glucose and revealed the protection conferred by HO-1. Oxidative/nitrosative stress conditions increased cell death and HO-1 protein levels. These effects of elevated glucose and HO inhibition on cell death were confirmed in primary endothelial cells (HUVECs). When cells were exposed to oxidative/nitrosative stress conditions there was also an increase in retinal endothelial cell death and HO-1 content. The inhibition of HO enhanced ROS production and the toxic effect induced by exposure to H2O2 and NOC-18 (NO donor). Overexpression of HO-1 prevented the toxic effect induced by H2O2 and NOC-18. In conclusion, HO-1 exerts a protective effect in retinal endothelial cells exposed to hyperglycemic and oxidative/nitrosative stress conditions.


Epilepsia | 2004

Neurotoxicity induced by antiepileptic drugs in cultured hippocampal neurons: a comparative study between carbamazepine, oxcarbazepine, and two new putative antiepileptic drugs, BIA 2-024 and BIA 2-093.

Inês M. Araújo; António F. Ambrósio; Ermelindo C. Leal; Maria J. Verdasca; João O. Malva; Patrício Soares-da-Silva; Arsélio P. Carvalho; Caetana M. Carvalho

Summary:  Purpose: Newly designed antiepileptic drugs (AEDs) are being evaluated for their efficacy in preventing seizures and for their toxic profiles. We investigated and compared the toxic effects of two dibenz[b,f]azepine derivatives with anticonvulsant activity, 10,11‐dihydro‐10‐hydroxyimino‐5H‐dibenz[b,f]azepine‐5‐carboxamide (BIA2‐024) and (S)‐(‐)‐10‐acetoxy‐10,11‐dihydro‐5H‐dibenz[b,f] azepine‐5‐carboxamide (BIA2‐093), with the structurally related compounds carbamazepine (CBZ) and oxcarbazepine (OXC), both in current use for the treatment of epilepsy.


Acta Biomaterialia | 2014

Chitosan-based dressings loaded with neurotensin—an efficient strategy to improve early diabetic wound healing

Liane Moura; Ana M.A. Dias; Ermelindo C. Leal; Lina Carvalho; Hermínio C. de Sousa; Eugénia Carvalho

One important complication of diabetes mellitus is chronic, non-healing diabetic foot ulcers (DFUs). This study aims to develop and use dressings based on chitosan derivatives for the sustained delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. Three different derivatives, namely N-carboxymethyl chitosan, 5-methyl pyrrolidinone chitosan (MPC) and N-succinyl chitosan, are presented as potential biomaterials for wound healing applications. Our results show that MPC has the best fluid handling capacity and delivery profile, also being non-toxic to Raw 264.7 and HaCaT cells. NT-loaded and non-loaded MPC dressings were applied to control/diabetic wounds to evaluate their in vitro/in vivo performance. The results show that the former induced more rapid healing (50% wound area reduction) in the early phases of wound healing in diabetic mice. A NT-loaded MPC foam also reduced expression of the inflammatory cytokine TNF-α (P<0.001) and decreased the amount of inflammatory infiltrate on day 3. On day 10 MMP-9 was reduced in diabetic skin (P<0.001), significantly increasing fibroblast migration and collagen (COL1A1, COL1A2 and COL3A1) expression and deposition. These results suggest that MPC-based dressings may work as an effective support for sustained NT release to reduce DFUs.


Diabetes, Obesity and Metabolism | 2012

Protective effects of the dipeptidyl peptidase IV inhibitor sitagliptin in the blood–retinal barrier in a type 2 diabetes animal model

Andreia Gonçalves; Ermelindo C. Leal; A. Paiva; E. Teixeira de Lemos; F. Teixeira; Carlos Ribeiro; Flávio Reis; António F. Ambrósio; Rosa Fernandes

Aim: The aim of this study was to evaluate the efficacy of sitagliptin, a dipeptidyl peptidase IV inhibitor (DPP‐IV), in preventing the deleterious effects of diabetes on the blood–retinal barrier in male Zucker Diabetic Fatty (ZDF) rats.


Biochimica et Biophysica Acta | 2014

Neurotensin-loaded collagen dressings reduce inflammation and improve wound healing in diabetic mice.

Liane Moura; Ana M.A. Dias; Edward Suesca; Sergio Casadiegos; Ermelindo C. Leal; Marta R. Fontanilla; Lina Carvalho; Hermínio C. de Sousa; Eugénia Carvalho

Impaired wound healing is an important clinical problem in diabetes mellitus and results in failure to completely heal diabetic foot ulcers (DFUs), which may lead to lower extremity amputations. In the present study, collagen based dressings were prepared to be applied as support for the delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. The performance of NT alone and NT-loaded collagen matrices to treat wounds in streptozotocin (STZ) diabetic induced mice was evaluated. Results showed that the prepared dressings were not-cytotoxic up to 72h after contact with macrophages (Raw 264.7) and human keratinocyte (HaCaT) cell lines. Moreover, those cells were shown to adhere to the collagen matrices without noticeable change in their morphology. NT-loaded collagen dressings induced faster healing (17% wound area reduction) in the early phases of wound healing in diabetic wounded mice. In addition, they also significantly reduced inflammatory cytokine expression namely, TNF-α (p<0.01) and IL-1β (p<0.01) and decreased the inflammatory infiltrate at day 3 post-wounding (inflammatory phase). After complete healing, metalloproteinase 9 (MMP-9) is reduced in diabetic skin (p<0.05) which significantly increased fibroblast migration and collagen (collagen type I, alpha 2 (COL1A2) and collagen type III, alpha 1 (COL3A1)) expression and deposition. These results suggest that collagen-based dressings can be an effective support for NT release into diabetic wound enhancing the healing process. Nevertheless, a more prominent scar is observed in diabetic wounds treated with collagen when compared to the treatment with NT alone.


Experimental Eye Research | 2009

High glucose and oxidative/nitrosative stress conditions induce apoptosis in retinal endothelial cells by a caspase-independent pathway.

Ermelindo C. Leal; Célia A. Aveleira; Áurea F. Castilho; Andreia M. Serra; Filipa I. Baptista; Ken-ichi Hosoya; John V. Forrester; António F. Ambrósio

Diabetic retinopathy (DR) is a leading cause of vision loss among working-age adults. Retinal endothelial cell apoptosis is an early event in DR, and oxidative stress is known to play an important role in this pathology. Recently, we found that high glucose induces apoptosis in retinal neural cells by a caspase-independent mechanism. Here, we investigated the mechanisms underlying retinal endothelial cell apoptosis induced by high glucose and oxidative/nitrosative stress conditions. Endothelial cells (TR-iBRB2 rat retinal endothelial cell line) were exposed to high glucose (long-term exposure, 7 days), or to NOC-18 (nitric oxide donor; 250microM) or H(2)O(2) (100microM) for 24h. Cell viability was assessed by the MTT assay and cell proliferation by [methyl-(3)H]-thymidine incorporation into DNA. Apoptotic cells were detected with Hoechst or Annexin V staining. Active caspases were detected by an apoptosis detection kit. Active caspase-3 and apoptosis-inducing factor (AIF) protein levels were assessed by Western blot or immunohistochemistry. High glucose, NOC-18 and H(2)O(2) increased apoptosis in retinal endothelial cells. High glucose and mannitol decreased cell proliferation, but mannitol did not induce apoptosis. Caspase activation did not increase in high glucose- or NOC-18-treated cells, but it increased in cells exposed to H(2)O(2). However, the protein levels of AIF decreased in mitochondrial fractions and increased in nuclear fractions, in all conditions. These results are the first demonstrating that retinal endothelial cell apoptosis induced by high glucose is independent of caspase activation, and is correlated with AIF translocation to the nucleus. NOC-18 and H(2)O(2) also activate a caspase-independent apoptotic pathway, although H(2)O(2) can also induce caspase-mediated apoptosis.


Current Drug Targets - Cns & Neurological Disorders | 2005

Old and New Drug Targets in Diabetic Retinopathy: From Biochemical Changes to Inflammation and Neurodegeneration

Ermelindo C. Leal; Ana Raquel Santiago; António F. Ambrósio

Diabetic Retinopathy (DR) is a major complication of diabetes and is a leading cause of blindness in western countries. DR has been considered a microvascular disease, and the blood-retinal barrier breakdown is a hallmark of this disease. The available treatments are scarce and not very effective. Despite the attempts to control blood glucose levels and blood pressure, many diabetic patients are affected by DR, which progresses to more severe forms of disease, where laser photocoagulation therapy is needed. DR has a huge psychological impact in patients and tremendous economic and social costs. Taking this into account, the scientific community is committed to find a treatment to DR. Understanding the cellular and molecular mechanisms underlying the pathogenesis of DR will facilitate the development of strategies to prevent, or at least to delay the progression of the disease. The involvement of the polyol pathway, advanced glycation end products, protein kinase C and oxidative stress in the pathogenesis of DR is well-documented, and several clinical trials have been conducted to test the efficacy of various drugs. More recent findings also demonstrate that DR has characteristics of chronic inflammatory disease and neurodegenerative disease, which increases the opportunity of intervention at the pharmacological level. This review presents past and recent evidences demonstrating the involvement of different molecules and processes in DR, and how different approaches and pharmacological tools have been used to prevent retinal cell dysfunction.

Collaboration


Dive into the Ermelindo C. Leal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Tellechea

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Aristidis Veves

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonios Kafanas

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Tecilazich

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge