Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio Gomez is active.

Publication


Featured researches published by Antonio Gomez.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Distinct DNA methylomes of newborns and centenarians

Holger Heyn; Ning Li; Humberto J. Ferreira; Sebastian Moran; David G. Pisano; Antonio Gomez; Javier Díez; Jose V. Sanchez-Mut; Fernando Setien; F. Javier Carmona; Annibale Alessandro Puca; Sergi Sayols; Miguel Angel Pujana; Jordi Serra-Musach; Isabel Iglesias-Platas; Francesc Formiga; Agustín F. Fernández; Mario F. Fraga; Simon Heath; Alfonso Valencia; Ivo Gut; Jun Wang; Manel Esteller

Human aging cannot be fully understood in terms of the constrained genetic setting. Epigenetic drift is an alternative means of explaining age-associated alterations. To address this issue, we performed whole-genome bisulfite sequencing (WGBS) of newborn and centenarian genomes. The centenarian DNA had a lower DNA methylation content and a reduced correlation in the methylation status of neighboring cytosine—phosphate—guanine (CpGs) throughout the genome in comparison with the more homogeneously methylated newborn DNA. The more hypomethylated CpGs observed in the centenarian DNA compared with the neonate covered all genomic compartments, such as promoters, exonic, intronic, and intergenic regions. For regulatory regions, the most hypomethylated sequences in the centenarian DNA were present mainly at CpG-poor promoters and in tissue-specific genes, whereas a greater level of DNA methylation was observed in CpG island promoters. We extended the study to a larger cohort of newborn and nonagenarian samples using a 450,000 CpG-site DNA methylation microarray that reinforced the observation of more hypomethylated DNA sequences in the advanced age group. WGBS and 450,000 analyses of middle-age individuals demonstrated DNA methylomes in the crossroad between the newborn and the nonagenarian/centenarian groups. Our study constitutes a unique DNA methylation analysis of the extreme points of human life at a single-nucleotide resolution level.


Genome Research | 2013

DNA methylation contributes to natural human variation

Holger Heyn; Sebastian Moran; Irene Hernando-Herraez; Sergi Sayols; Antonio Gomez; Juan Sandoval; Dave Monk; Kenichiro Hata; Tomas Marques-Bonet; Liewei Wang; Manel Esteller

DNA methylation patterns are important for establishing cell, tissue, and organism phenotypes, but little is known about their contribution to natural human variation. To determine their contribution to variability, we have generated genome-scale DNA methylation profiles of three human populations (Caucasian-American, African-American, and Han Chinese-American) and examined the differentially methylated CpG sites. The distinctly methylated genes identified suggest an influence of DNA methylation on phenotype differences, such as susceptibility to certain diseases and pathogens, and response to drugs and environmental agents. DNA methylation differences can be partially traced back to genetic variation, suggesting that differentially methylated CpG sites serve as evolutionarily established mediators between the genetic code and phenotypic variability. Notably, one-third of the DNA methylation differences were not associated with any genetic variation, suggesting that variation in population-specific sites takes place at the genetic and epigenetic levels, highlighting the contribution of epigenetic modification to natural human variation.


Journal of Clinical Oncology | 2013

A Prognostic DNA Methylation Signature for Stage I Non–Small-Cell Lung Cancer

Juan Sandoval; Jesús Méndez-González; Ernest Nadal; Guoan Chen; F. Javier Carmona; Sergi Sayols; Sebastian Moran; Holger Heyn; Miguel Vizoso; Antonio Gomez; Montse Sanchez-Cespedes; Yassen Assenov; Fabian Müller; Christoph Bock; Miquel Taron; Josefina Mora; Lucia Anna Muscarella; Triantafillos Liloglou; Michael P.A. Davies; Marina Pollán; Maria J. Pajares; Wenceslao Torre; Luis M. Montuenga; Elisabeth Brambilla; John K. Field; Luca Roz; Marco Lo Iacono; Giorgio V. Scagliotti; Rafael Rosell; David G. Beer

PURPOSEnNon-small-cell lung cancer (NSCLC) is a tumor in which only small improvements in clinical outcome have been achieved. The issue is critical for stage I patients for whom there are no available biomarkers that indicate which high-risk patients should receive adjuvant chemotherapy. We aimed to find DNA methylation markers that could be helpful in this regard.nnnPATIENTS AND METHODSnA DNA methylation microarray that analyzes 450,000 CpG sites was used to study tumoral DNA obtained from 444 patients with NSCLC that included 237 stage I tumors. The prognostic DNA methylation markers were validated by a single-methylation pyrosequencing assay in an independent cohort of 143 patients with stage I NSCLC.nnnRESULTSnUnsupervised clustering of the 10,000 most variable DNA methylation sites in the discovery cohort identified patients with high-risk stage I NSCLC who had shorter relapse-free survival (RFS; hazard ratio [HR], 2.35; 95% CI, 1.29 to 4.28; P = .004). The study in the validation cohort of the significant methylated sites from the discovery cohort found that hypermethylation of five genes was significantly associated with shorter RFS in stage I NSCLC: HIST1H4F, PCDHGB6, NPBWR1, ALX1, and HOXA9. A signature based on the number of hypermethylated events distinguished patients with high- and low-risk stage I NSCLC (HR, 3.24; 95% CI, 1.61 to 6.54; P = .001).nnnCONCLUSIONnThe DNA methylation signature of NSCLC affects the outcome of stage I patients, and it can be practically determined by user-friendly polymerase chain reaction assays. The analysis of the best DNA methylation biomarkers improved prognostic accuracy beyond standard staging.


Nature Structural & Molecular Biology | 2012

Intronic RNAs mediate EZH2 regulation of epigenetic targets

Sonia Guil; Marta Soler; Anna Portela; Jordi Carrère; Elena Fonalleras; Antonio Gomez; Alberto Villanueva; Manel Esteller

Epigenetic deregulation at a number of genomic loci is one of the hallmarks of cancer. A role for some RNA molecules in guiding repressive polycomb complex PRC2 to specific chromatin regions has been proposed. Here we use an in vivo cross-linking method to detect and identify direct PRC2-RNA interactions in human cancer cells, revealing a number of intronic RNA sequences capable of binding to the core component EZH2 and regulating the transcriptional output of its genomic counterpart. Overexpression of EZH2-bound intronic RNA for the H3K4 methyltransferase gene SMYD3 is concomitant with an increase in EZH2 occupancy throughout the corresponding genomic fragment and is sufficient to reduce levels of the endogenous transcript and protein, resulting in reduced growth capability in cell culture and animal models. These findings reveal the role of intronic RNAs in fine-tuning gene expression regulation at the level of transcriptional control.


Carcinogenesis | 2013

DNA methylation profiling in breast cancer discordant identical twins identifies DOK7 as novel epigenetic biomarker

Holger Heyn; F. Javier Carmona; Antonio Gomez; Humberto J. Ferreira; Jordana T. Bell; Sergi Sayols; Kirsten Ward; Olafur A. Stefansson; Sebastian Moran; Juan Sandoval; Jorunn E. Eyfjörd; Tim D. Spector; Manel Esteller

Using whole blood from 15 twin pairs discordant for breast cancer and high-resolution (450K) DNA methylation analysis, we identified 403 differentially methylated CpG sites including known and novel potential breast cancer genes. Confirming the results in an independent validation cohort of 21 twin pairs determined the docking protein DOK7 as a candidate for blood-based cancer diagnosis. DNA hypermethylation of the promoter region was also seen in primary breast cancer tissues and cancer cell lines. Hypermethylation of DOK7 occurs years before tumor diagnosis, suggesting a role as a powerful epigenetic blood-based biomarker as well as providing insights into breast cancer pathogenesis.


Circulation-cardiovascular Genetics | 2014

A DNA Methylation Map of Human Atherosclerosis.

Silvio Zaina; Holger Heyn; F. Javier Carmona; Nuray Varol; Sergi Sayols; Enric Condom; José Ramírez-Ruz; Antonio Gomez; Isabel Gonçalves; Sebastian Moran; Manel Esteller

Background—Epigenetic alterations may contribute to the development of atherosclerosis. In particular, DNA methylation, a reversible and highly regulated DNA modification, could influence disease onset and progression because it functions as an effector for environmental influences, including diet and lifestyle, both of which are risk factors for cardiovascular diseases. Methods and Results—To address the role of DNA methylation changes in atherosclerosis, we compared a donor-matched healthy and atherosclerotic human aorta sample using whole-genome shotgun bisulfite sequencing. We observed that the atherosclerotic portion of the aorta was hypermethylated across many genomic loci in comparison with the matched healthy counterpart. Furthermore, we defined specific loci of differential DNA methylation using a set of donor-matched aortic samples and a high-density (>450 000 CpG sites) DNA methylation microarray. The functional importance in the disease was corroborated by crossing the DNA methylation signature with the corresponding expression data of the same samples. Among the differentially methylated CpGs associated with atherosclerosis onset, we identified genes participating in endothelial and smooth muscle functions. These findings provide new clues toward a better understanding of the molecular mechanisms of atherosclerosis. Conclusions—Our data identify an atherosclerosis-specific DNA methylation profile that highlights the contribution of different genes and pathways to the disorder. Interestingly, the observed gain of DNA methylation in the atherosclerotic lesions justifies efforts to develop DNA demethylating agents for therapeutic benefit.


Brain | 2013

DNA methylation map of mouse and human brain identifies target genes in Alzheimer’s disease

Jose V. Sanchez-Mut; Esther Aso; Nicolas Panayotis; Ira T. Lott; Mara Dierssen; Alberto Rábano; Rocío G. Urdinguio; Agustín F. Fernández; Aurora Astudillo; José I. Martín-Subero; Balázs Bálint; Mario F. Fraga; Antonio Gomez; Cecile Gurnot; Jean-Christophe Roux; Jesús Avila; Takao K. Hensch; Isidro Ferrer; Manel Esteller

The central nervous system has a pattern of gene expression that is closely regulated with respect to functional and anatomical regions. DNA methylation is a major regulator of transcriptional activity, and aberrations in the distribution of this epigenetic mark may be involved in many neurological disorders, such as Alzheimer’s disease. Herein, we have analysed 12 distinct mouse brain regions according to their CpG 5’-end gene methylation patterns and observed their unique epigenetic landscapes. The DNA methylomes obtained from the cerebral cortex were used to identify aberrant DNA methylation changes that occurred in two mouse models of Alzheimer’s disease. We were able to translate these findings to patients with Alzheimer’s disease, identifying DNA methylation-associated silencing of three targets genes: thromboxane A2 receptor (TBXA2R), sorbin and SH3 domain containing 3 (SORBS3) and spectrin beta 4 (SPTBN4). These hypermethylation targets indicate that the cyclic AMP response element-binding protein (CREB) activation pathway and the axon initial segment could contribute to the disease.


Molecular Cell | 2014

Regulation of pri-miRNA Processing by a Long Noncoding RNA Transcribed from an Ultraconserved Region

Julia Liz; Anna Portela; Marta Soler; Antonio Gomez; Hui Ling; Gracjan Michlewski; George A. Calin; Sonia Guil; Manel Esteller

Noncoding RNAs (ncRNAs) control cellular programs by affecting protein-coding genes, but evidence increasingly points to their involvement in a network of ncRNA-ncRNA interactions. Here, we show that a long ncRNA, Uc.283+A, controls pri-miRNA processing. Regulation requires complementarity between the lower stem region of the pri-miR-195 transcript and an ultraconserved sequence in Uc.283+A, which prevents pri-miRNA cleavage by Drosha. Mutation of the site in either RNA molecule uncouples regulation in vivo and in vitro. We propose a model in which lower-stem strand invasion by Uc.283+A impairs microprocessor recognition and efficient pri-miRNA cropping. In addition to identifying a case of RNA-directed regulation of miRNA biogenesis, our study reveals regulatory networks involving different ncRNA classes of importance in cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A 76-kb duplicon maps close to the BCR gene on chromosome 22 and the ABL gene on chromosome 9: Possible involvement in the genesis of the Philadelphia chromosome translocation

Giuseppe Saglio; Clelia Tiziana Storlazzi; Emilia Giugliano; Cecilia Surace; Luisa Anelli; Giovanna Rege-Cambrin; Antonella Zagaria; Antonio Jimenez Velasco; Anabel Heiniger; Patrizia Scaravaglio; Antonio Gomez; Josè Roman Gomez; Nicoletta Archidiacono; Sandro Banfi; Mariano Rocchi

A patient with a typical form of chronic myeloid leukemia was found to carry a large deletion on the derivative chromosome 9q+ and an unusual BCR-ABL transcript characterized by the insertion, between BCR exon 14 and ABL exon 2, of 126 bp derived from a region located on chromosome 9, 1.4 Mb 5′ to ABL. This sequence was contained in the bacterial artificial chromosome RP11-65J3, which in fluorescence in situ hybridization experiments on normal metaphases was found to detect, in addition to the predicted clear signal at 9q34, a faint but distinct signal at 22q11.2, where the BCR gene is located, suggesting the presence of a large region of homology between the two chromosomal regions. Indeed, blast analysis of the RP11-65J3 sequence against the entire human genome revealed the presence of a stretch of homology, about 76 kb long, located approximately 150 kb 3′ to the BCR gene, and containing the 126-bp insertion sequence. Evolutionary studies using fluorescence in situ hybridization identified the region as a duplicon, which transposed from the region orthologous to human 9q34 to chromosome 22 after the divergence of orangutan from the human-chimpanzee-gorilla common ancestor about 14 million years ago. Recent sequence analyses have disclosed an unpredicted extensive segmental duplication of our genome, and the impact of duplicons in triggering genomic disorders is becoming more and more apparent. The discovery of a large duplicon relatively close to the ABL and BCR genes and the finding that the 126-bp insertion is very close to the duplicon at 9q34 open the question of the possible involvement of the duplicon in the formation of the Philadelphia chromosome translocation.


Genome Biology | 2016

Epigenomic analysis detects aberrant super-enhancer DNA methylation in human cancer

Holger Heyn; Enrique Vidal; Humberto J. Ferreira; Miguel Vizoso; Sergi Sayols; Antonio Gomez; Sebastian Moran; Raquel Boque-Sastre; Sonia Guil; Anna Martínez-Cardús; Charles Y. Lin; Romina Royo; Jose V. Sanchez-Mut; Ramon Martinez; Marta Gut; David Torrents; Modesto Orozco; Ivo Gut; Richard A. Young; Manel Esteller

BackgroundOne of the hallmarks of cancer is the disruption of gene expression patterns. Many molecular lesions contribute to this phenotype, and the importance of aberrant DNA methylation profiles is increasingly recognized. Much of the research effort in this area has examined proximal promoter regions and epigenetic alterations at other loci are not well characterized.ResultsUsing whole genome bisulfite sequencing to examine uncharted regions of the epigenome, we identify a type of far-reaching DNA methylation alteration in cancer cells of the distal regulatory sequences described as super-enhancers. Human tumors undergo a shift in super-enhancer DNA methylation profiles that is associated with the transcriptional silencing or the overactivation of the corresponding target genes. Intriguingly, we observe locally active fractions of super-enhancers detectable through hypomethylated regions that suggest spatial variability within the large enhancer clusters. Functionally, the DNA methylomes obtained suggest that transcription factors contribute to this local activity of super-enhancers and that trans-acting factors modulate DNA methylation profiles with impact on transforming processes during carcinogenesis.ConclusionsWe develop an extensive catalogue of human DNA methylomes at base resolution to better understand the regulatory functions of DNA methylation beyond those of proximal promoter gene regions. CpG methylation status in normal cells points to locally active regulatory sites at super-enhancers, which are targeted by specific aberrant DNA methylation events in cancer, with putative effects on the expression of downstream genes.

Collaboration


Dive into the Antonio Gomez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Holger Heyn

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar

F. Javier Carmona

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando Setien

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Jose V. Sanchez-Mut

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge