Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio Inforzato is active.

Publication


Featured researches published by Antonio Inforzato.


The New England Journal of Medicine | 2014

Genetic PTX3 Deficiency and Aspergillosis in Stem-Cell Transplantation

Cristina Cunha; Franco Aversa; João F. Lacerda; Alessandro Busca; Oliver Kurzai; Matthias Grube; Jürgen Löffler; Johan Maertens; Alain S. Bell; Antonio Inforzato; Elisa Barbati; B. G. Almeida; Pedro Santos e Sousa; Anna Maria Barbui; Leonardo Potenza; Morena Caira; Fernando Rodrigues; Giovanni Salvatori; Livio Pagano; Mario Luppi; Alberto Mantovani; Andrea Velardi; Luigina Romani; Agostinho Carvalho

BACKGROUND The soluble pattern-recognition receptor known as long pentraxin 3 (PTX3) has a nonredundant role in antifungal immunity. The contribution of single-nucleotide polymorphisms (SNPs) in PTX3 to the development of invasive aspergillosis is unknown. METHODS We screened an initial cohort of 268 patients undergoing hematopoietic stem-cell transplantation (HSCT) and their donors for PTX3 SNPs modifying the risk of invasive aspergillosis. The analysis was also performed in a multicenter study involving 107 patients with invasive aspergillosis and 223 matched controls. The functional consequences of PTX3 SNPs were investigated in vitro and in lung specimens from transplant recipients. RESULTS Receipt of a transplant from a donor with a homozygous haplotype (h2/h2) in PTX3 was associated with an increased risk of infection, in both the discovery study (cumulative incidence, 37% vs. 15%; adjusted hazard ratio, 3.08; P=0.003) and the confirmation study (adjusted odds ratio, 2.78; P=0.03), as well as with defective expression of PTX3. Functionally, PTX3 deficiency in h2/h2 neutrophils, presumably due to messenger RNA instability, led to impaired phagocytosis and clearance of the fungus. CONCLUSIONS Genetic deficiency of PTX3 affects the antifungal capacity of neutrophils and may contribute to the risk of invasive aspergillosis in patients treated with HSCT. (Funded by the European Society of Clinical Microbiology and Infectious Diseases and others.).


Journal of Biological Chemistry | 2006

Identification of an Antiangiogenic FGF2-binding Site in the N Terminus of the Soluble Pattern Recognition Receptor PTX3

Maura Camozzi; Marco Rusnati; Antonella Bugatti; Barbara Bottazzi; Alberto Mantovani; Antonio Bastone; Antonio Inforzato; Silvia Vincenti; Luisa Bracci; Domenico Mastroianni; Marco Presta

Long-pentraxin 3 (PTX3) is a soluble pattern recognition receptor with non-redundant functions in inflammation and innate immunity. PTX3 comprises a pentraxin-like C-terminal domain involved in complement activation via C1q interaction and an N-terminal extension with unknown functions. PTX3 binds fibroblast growth factor-2 (FGF2), inhibiting its pro-angiogenic and pro-restenotic activity. Here, retroviral transduced endothelial cells (ECs) overexpressing the N-terminal fragment PTX3-(1–178) showed reduced mitogenic activity in response to FGF2. Accordingly, purified recombinant PTX3-(1–178) binds FGF2, prevents PTX3/FGF2 interaction, and inhibits FGF2 mitogenic activity in ECs. Also, the monoclonal antibody mAb-MNB4, which recognizes the PTX3-(87–99) epitope, prevents FGF2/PTX3 interaction and abolishes the FGF2 antagonist activity of PTX3. Consistently, the synthetic peptides PTX3-(82–110) and PTX3-(97–110) bind FGF2 and inhibit the interaction of FGF2 with PTX3 immobilized to a BIAcore sensor chip, FGF2-dependent EC proliferation, and angiogenesis in vivo. Thus, the data identify a FGF2-binding domain in the N-terminal extension of PTX3 spanning the PTX3-(97–110) region, pointing to a novel function for the N-terminal extension of PTX3 and underlining the complexity of the PTX3 molecule for modular humoral pattern recognition.


Journal of Biological Chemistry | 2008

Structural Characterization of PTX3 Disulfide Bond Network and Its Multimeric Status in Cumulus Matrix Organization

Antonio Inforzato; Vincenzo Rivieccio; Antonio P. Morreale; Antonio Bastone; Antonietta Salustri; Laura Scarchilli; Antonio Verdoliva; Silvia Vincenti; Grazia Gallo; Caterina Chiapparino; Lucrezia Pacello; Eleonora Nucera; Ottaviano Serlupi-Crescenzi; Anthony J. Day; Barbara Bottazzi; Alberto Mantovani; Rita De Santis; Giovanni Salvatori

PTX3 is an acute phase glycoprotein that plays key roles in resistance to certain pathogens and in female fertility. PTX3 exerts its functions by interacting with a number of structurally unrelated molecules, a capacity that is likely to rely on its complex multimeric structure stabilized by interchain disulfide bonds. In this study, PAGE analyses performed under both native and denaturing conditions indicated that human recombinant PTX3 is mainly composed of covalently linked octamers. The network of disulfide bonds supporting this octameric assembly was resolved by mass spectrometry and Cys to Ser site-directed mutagenesis. Here we report that cysteine residues at positions 47, 49, and 103 in the N-terminal domain form three symmetric interchain disulfide bonds stabilizing four protein subunits in a tetrameric arrangement. Additional interchain disulfide bonds formed by the C-terminal domain cysteines Cys317 and Cys318 are responsible for linking the PTX3 tetramers into octamers. We also identified three intrachain disulfide bonds within the C-terminal domain that we used as structural constraints to build a new three-dimensional model for this domain. Previously it has been shown that PTX3 is a key component of the cumulus oophorus extracellular matrix, which forms around the oocyte prior to ovulation, because cumuli from PTX3-/- mice show defective matrix organization. Recombinant PTX3 is able to restore the normal phenotype ex vivo in cumuli from PTX3-/- mice. Here we demonstrate that PTX3 Cys to Ser mutants, mainly assembled into tetramers, exhibited wild type rescue activity, whereas a mutant, predominantly composed of dimers, had impaired functionality. These findings indicate that protein oligomerization is essential for PTX3 activity within the cumulus matrix and implicate PTX3 tetramers as the functional molecular units required for cumulus matrix organization and stabilization.


Journal of Biological Chemistry | 2010

The Angiogenic Inhibitor Long Pentraxin PTX3 Forms an Asymmetric Octamer with Two Binding Sites for FGF2

Antonio Inforzato; Clair Baldock; Thomas A. Jowitt; David F. Holmes; Ragnar Lindstedt; Marcella Marcellini; Vincenzo Rivieccio; David C. Briggs; Karl E. Kadler; Antonio Verdoliva; Barbara Bottazzi; Alberto Mantovani; Giovanni Salvatori; Anthony J. Day

The inflammation-associated long pentraxin PTX3 plays key roles in innate immunity, female fertility, and vascular biology (e.g. it inhibits FGF2 (fibroblast growth factor 2)-mediated angiogenesis). PTX3 is composed of multiple protomers, each composed of distinct N- and C-terminal domains; however, it is not known how these are organized or contribute to its functional properties. Here, biophysical analyses reveal that PTX3 is composed of eight identical protomers, associated through disulfide bonds, forming an elongated and asymmetric, molecule with two differently sized domains interconnected by a stalk. The N-terminal region of the protomer provides the main structural determinant underlying this quaternary organization, supporting formation of a disulfide-linked tetramer and a dimer of dimers (a non-covalent tetramer), giving rise to the asymmetry of the molecule. Furthermore, the PTX3 octamer is shown to contain two FGF2 binding sites, where it is the tetramers that act as the functional units in ligand recognition. Thus, these studies provide a unifying model of the PTX3 oligomer, explaining both its quaternary organization and how this is required for its antiangiogenic function.


BioMed Research International | 2011

Pathogen recognition by the long pentraxin PTX3.

Federica Moalli; Sébastien Jaillon; Antonio Inforzato; Marina Sironi; Barbara Bottazzi; Alberto Mantovani; Cecilia Garlanda

Innate immunity represents the first line of defence against pathogens and plays key roles in activation and orientation of the adaptive immune response. The innate immune system comprises both a cellular and a humoral arm. Components of the humoral arm include soluble pattern recognition molecules (PRMs) that recognise pathogen-associated molecular patterns (PAMPs) and initiate the immune response in coordination with the cellular arm, therefore acting as functional ancestors of antibodies. The long pentraxin PTX3 is a prototypic soluble PRM that is produced at sites of infection and inflammation by both somatic and immune cells. Gene targeting of this evolutionarily conserved protein has revealed a nonredundant role in resistance to selected pathogens. Moreover, PTX3 exerts important functions at the cross-road between innate immunity, inflammation, and female fertility. Here, we review the studies on PTX3, with emphasis on pathogen recognition and cross-talk with other components of the innate immune system.


Annals of the New York Academy of Sciences | 2013

The long pentraxin PTX3: a paradigm for humoral pattern recognition molecules

Alberto Mantovani; Sonia Valentino; Stefania Gentile; Antonio Inforzato; Barbara Bottazzi; Cecilia Garlanda

Pattern recognition molecules (PRMs) are components of the humoral arm of innate immunity; they recognize pathogen‐associated molecular patterns (PAMP) and are functional ancestors of antibodies, promoting complement activation, opsonization, and agglutination. In addition, several PRMs have a regulatory function on inflammation. Pentraxins are a family of evolutionarily conserved PRMs characterized by a cyclic multimeric structure. On the basis of structure, pentraxins have been operationally divided into short and long families. C‐reactive protein (CRP) and serum amyloid P component are prototypes of the short pentraxin family, while pentraxin 3 (PTX3) is a prototype of the long pentraxins. PTX3 is produced by somatic and immune cells in response to proinflammatory stimuli and Toll‐like receptor engagement, and it interacts with several ligands and exerts multifunctional properties. Unlike CRP, PTX3 gene organization and regulation have been conserved in evolution, thus allowing its pathophysiological roles to be evaluated in genetically modified animals. Here we will briefly review the general properties of CRP and PTX3 as prototypes of short and long pentraxins, respectively, emphasizing in particular the functional role of PTX3 as a prototypic PRM with antibody‐like properties.


Biochemical Journal | 2010

Transglutaminase-2: a new endostatin partner in the extracellular matrix of endothelial cells.

Clément Faye; Antonio Inforzato; Marine Bignon; Daniel J. Hartmann; Laurent Muller; Lionel Ballut; Björn Olsen; Anthony J. Day; Sylvie Ricard-Blum

Endostatin, a C-terminal fragment of collagen XVIII, binds to TG-2 (transglutaminase-2) in a cation-dependent manner. Recombinant human endostatin binds to TG-2 with an affinity in the nanomolar range (Kd=6.8 nM). Enzymatic assays indicated that, in contrast with other extracellular matrix proteins, endostatin is not a glutaminyl substrate of TG-2 and is not cross-linked to itself by the enzyme. Two arginine residues of endostatin, Arg27 and Arg139, are crucial for its binding to TG-2. They are also involved in the binding to heparin [Sasaki, Larsson, Kreuger, Salmivirta, Claesson-Welsh, Lindahl, Hohenester and Timpl (1999) EMBO J. 18, 6240-6248], and to alpha5beta1 and alphavbeta3 integrins [Faye, Moreau, Chautard, Jetne, Fukai, Ruggiero, Humphries, Olsen and Ricard-Blum (2009) J. Biol. Chem. 284, 22029-22040], suggesting that endostatin is not able to interact simultaneously with TG-2 and heparan sulfate, or with TG-2 and integrins. Inhibition experiments support the hypothesis that the GTP-binding site of TG-2 is a potential binding site for endostatin. Endostatin and TG-2 are co-localized in the extracellular matrix secreted by endothelial cells under hypoxia, which stimulates angiogenesis. This interaction, occurring in a cellular context, might participate in the concerted regulation of angiogenesis and tumorigenesis by the two proteins.


Seminars in Immunology | 2013

PTX3 as a paradigm for the interaction of pentraxins with the complement system.

Antonio Inforzato; Andrea Doni; Isabella Barajon; Roberto Leone; Cecilia Garlanda; Barbara Bottazzi; Alberto Mantovani

Pentraxins are highly conserved components of the humoral arm of innate immunity. They include the short pentraxins C reactive protein (CRP) and serum amyloid P component (SAP), and the long pentraxin PTX3. These are soluble pattern-recognition molecules that are present in the blood and body fluids, and share the ability to recognize pathogens and promote their disposal. CRP and SAP are produced systemically in the liver while PTX3 is produced locally in a number of tissues, macrophages and neutrophils being major sources of this long pentraxin. Pentraxins interact with components of the classical and lectin pathways of Complement as well as with Complement regulators. In particular, PTX3 recognizes C1q, factor H, MBL and ficolins, where these interactions amplify the repertoire of microbial recognition and effector functions of the Complement system. The complex interaction of pentraxins with the Complement system at different levels has broad implications for host defence and regulation of inflammation.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Long Pentraxin 3/Tumor Necrosis Factor-Stimulated Gene-6 Interaction A Biological Rheostat for Fibroblast Growth Factor 2–Mediated Angiogenesis

Daria Leali; Antonio Inforzato; Roberto Ronca; Roberta Bianchi; Mirella Belleri; Daniela Coltrini; Emanuela Di Salle; Marina Sironi; Giuseppe Danilo Norata; Barbara Bottazzi; Cecilia Garlanda; Anthony J. Day; Marco Presta

Objective— Angiogenesis is regulated by the balance between pro- and antiangiogenic factors and by extracellular matrix protein interactions. Fibroblast growth factor 2 (FGF2) is a major proangiogenic inducer inhibited by the interaction with the soluble pattern recognition receptor long pentraxin 3 (PTX3). PTX3 is locally coexpressed with its ligand TSG-6, a secreted glycoprotein that cooperates with PTX3 in extracellular matrix assembly. Here, we characterized the effect of TSG-6 on PTX3/FGF2 interaction and FGF2-mediated angiogenesis. Methods and Results— Solid phase binding and surface plasmon resonance assays show that TSG-6 and FGF2 bind the PTX3 N-terminal domain with similar affinity. Accordingly, TSG-6 prevents FGF2/PTX3 interaction and suppresses the inhibition exerted by PTX3 on heparan sulfate proteoglycan/FGF2/FGF receptor complex formation and on FGF2-dependent angiogenesis in vitro and in vivo. Also, endogenous PTX3 exerts an inhibitory effect on vascularization induced by FGF2 in a murine subcutaneous Matrigel plug assay, the inhibition being abolished in Ptx3 -null mice or by TSG-6 treatment in wild-type animals. Conclusion— TSG-6 reverts the inhibitory effects exerted by PTX3 on FGF2-mediated angiogenesis through competition of FGF2/PTX3 interaction. This may provide a novel mechanism to control angiogenesis in those pathological settings characterized by the coexpression of TSG-6 and PTX3, in which the relative levels of these proteins may fine-tune the angiogenic activity of FGF2.Objective—Angiogenesis is regulated by the balance between pro- and antiangiogenic factors and by extracellular matrix protein interactions. Fibroblast growth factor 2 (FGF2) is a major proangiogenic inducer inhibited by the interaction with the soluble pattern recognition receptor long pentraxin 3 (PTX3). PTX3 is locally coexpressed with its ligand tumor necrosis factor-stimulated gene-6 (TSG-6), a secreted glycoprotein that cooperates with PTX3 in extracellular matrix assembly. Here, we characterized the effect of TSG-6 on PTX3/FGF2 interaction and FGF2-mediated angiogenesis. Methods and Results—Solid phase binding and surface plasmon resonance assays show that TSG-6 and FGF2 bind the PTX3 N-terminal domain with similar affinity. Accordingly, TSG-6 prevents FGF2/PTX3 interaction and suppresses the inhibition exerted by PTX3 on heparan sulfate proteoglycan/FGF2/FGF receptor complex formation and on FGF2-dependent angiogenesis in vitro and in vivo. Also, endogenous PTX3 exerts an inhibitory effect on vascularization induced by FGF2 in a murine subcutaneous Matrigel plug assay, the inhibition being abolished in Ptx3-null mice or by TSG-6 treatment in wild-type animals. Conclusion—TSG-6 reverts the inhibitory effects exerted by PTX3 on FGF2-mediated angiogenesis through competition of FGF2/PTX3 interaction. This may provide a novel mechanism to control angiogenesis in those pathological settings characterized by the coexpression of TSG-6 and PTX3, in which the relative levels of these proteins may fine-tune the angiogenic activity of FGF2.


Advances in Experimental Medicine and Biology | 2012

Pentraxins in Humoral Innate Immunity

Antonio Inforzato; Barbara Bottazzi; Cecilia Garlanda; Sonia Valentino; Alberto Mantovani

Innate immunity represents the first line of defence against pathogens and plays key roles in activation and orientation of the adaptive immune response. The innate immune system comprises both a cellular and a humoral arm. Components of the humoral arm include soluble pattern recognition molecules (PRMs) that recognise pathogens associated molecular patterns (PAMPs) and initiate the immune response in coordination with the cellular arm, therefore acting as functional ancestors of antibodies. The long pentraxin PTX3 is a prototypic soluble PRM that is produced at sites of infection and inflammation by both somatic and immune cells. Gene targeting of this evolutionarily conserved protein has revealed a non-redundant role in resistance to selected pathogens. Moreover, PTX3 exerts important functions at the crossroad between innate immunity, inflammation and female fertility. Here we review the studies on PTX3, with emphasis on pathogen recognition and crosstalk with other components of the innate immune system.

Collaboration


Dive into the Antonio Inforzato's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara Bottazzi

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Cecilia Garlanda

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Anthony J. Day

Wellcome Trust Centre for Cell-Matrix Research

View shared research outputs
Top Co-Authors

Avatar

Marina Sironi

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Bastone

Mario Negri Institute for Pharmacological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge