Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio J. Pierik is active.

Publication


Featured researches published by Antonio J. Pierik.


Biochimica et Biophysica Acta | 2012

The role of mitochondria in cellular iron–sulfur protein biogenesis and iron metabolism ☆

Roland Lill; Bastian Hoffmann; Sabine Molik; Antonio J. Pierik; Nicole Rietzschel; Oliver Stehling; Marta A. Uzarska; Holger Webert; Claudia Wilbrecht; Ulrich Mühlenhoff

Mitochondria play a key role in iron metabolism in that they synthesize heme, assemble iron-sulfur (Fe/S) proteins, and participate in cellular iron regulation. Here, we review the latter two topics and their intimate connection. The mitochondrial Fe/S cluster (ISC) assembly machinery consists of 17 proteins that operate in three major steps of the maturation process. First, the cysteine desulfurase complex Nfs1-Isd11 as the sulfur donor cooperates with ferredoxin-ferredoxin reductase acting as an electron transfer chain, and frataxin to synthesize an [2Fe-2S] cluster on the scaffold protein Isu1. Second, the cluster is released from Isu1 and transferred toward apoproteins with the help of a dedicated Hsp70 chaperone system and the glutaredoxin Grx5. Finally, various specialized ISC components assist in the generation of [4Fe-4S] clusters and cluster insertion into specific target apoproteins. Functional defects of the core ISC assembly machinery are signaled to cytosolic or nuclear iron regulatory systems resulting in increased cellular iron acquisition and mitochondrial iron accumulation. In fungi, regulation is achieved by iron-responsive transcription factors controlling the expression of genes involved in iron uptake and intracellular distribution. They are assisted by cytosolic multidomain glutaredoxins which use a bound Fe/S cluster as iron sensor and additionally perform an essential role in intracellular iron delivery to target metalloproteins. In mammalian cells, the iron regulatory proteins IRP1, an Fe/S protein, and IRP2 act in a post-transcriptional fashion to adjust the cellular needs for iron. Thus, Fe/S protein biogenesis and cellular iron metabolism are tightly linked to coordinate iron supply and utilization. This article is part of a Special Issue entitled: Cell Biology of Metals.


Nature Chemical Biology | 2012

Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes

Daili J. A. Netz; Carrie M. Stith; Martin Stümpfig; Gabriele Köpf; Daniel Vogel; Heide M Genau; Joseph L. Stodola; Roland Lill; Peter M. J. Burgers; Antonio J. Pierik

The eukaryotic replicative DNA polymerases (Pol α, δ, and ε), and the major DNA mutagenesis enzyme Pol ζ contain two conserved cysteine-rich metal-binding motifs (CysA and CysB) in the C-terminal domain (CTD) of their catalytic subunits. Here, we demonstrate by in vivo and in vitro approaches the presence of an essential [4Fe-4S] cluster in the CysB motif of all four yeast B-family DNA polymerases. Loss of the [4Fe-4S] cofactor by cysteine ligand mutagenesis in Pol3 destabilized the CTD and abrogated interaction with the Pol31-Pol32 subunits. Reciprocally, overexpression of accessory subunits increased the amount of CTD-bound Fe-S cluster. This implies an important physiological role of the Fe-S cluster in polymerase complex stabilization. Further, we demonstrate that the Zn-binding CysA motif is required for PCNA-mediated Pol δ processivity. Together, our findings show that the function of eukaryotic replicative DNA polymerases crucially depends on different metallocenters for accessory subunit recruitment and for replisome stability.


Journal of Biological Chemistry | 1999

Carbon Monoxide and Cyanide as Intrinsic Ligands to Iron in the Active Site of [NiFe]-Hydrogenases NiFe(CN)2CO, BIOLOGY’S WAY TO ACTIVATE H2

Antonio J. Pierik; Winfried Roseboom; Randolph P. Happe; Kimberly A. Bagley; Simon P. J. Albracht

Infrared-spectroscopic studies on the [NiFe]-hydrogenase of Chromatium vinosum-enriched in15N or 13C, as well as chemical analyses, show that this enzyme contains three non-exchangeable, intrinsic, diatomic molecules as ligands to the active site, one carbon monoxide molecule and two cyanide groups. The results form an explanation for the three non-protein ligands to iron detected in the crystal structure of theDesulfovibrio gigas hydrogenase (Volbeda, A., Garcin, E., Piras, C., De Lacey, A. I., Fernandez, V. M., Hatchikian, E. C., Frey, M., and Fontecilla-Camps, J. C. (1996)J. Am. Chem. Soc. 118, 12989–12996) and for the low spin character of the lone ferrous iron ion observed with Mössbauer spectroscopy (Surerus, K. K., Chen, M., Van der Zwaan, W., Rusnak, F. M., Kolk, M., Duin, E. C., Albracht, S. P. J., and Münck, E. (1994) Biochemistry33, 4980–4993). The results do not support the notion, based upon studies of Desulfovibrio vulgaris [NiFe]-hydrogenase (Higuchi, Y., Yagi, T., and Noritake, Y. (1997) Structure5, 1671–1680), that SO is a ligand to the active site. The occurrence of both cyanide and carbon monoxide as intrinsic constituents of a prosthetic group is unprecedented in biology.


The EMBO Journal | 2004

The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron–sulphur proteins

Janneke Balk; Antonio J. Pierik; Daili J. A. Netz; Ulrich Mühlenhoff; Roland Lill

The genome of the yeast Saccharomyces cerevisiae encodes the essential protein Nar1p that is conserved in virtually all eukaryotes and exhibits striking sequence similarity to bacterial iron‐only hydrogenases. A human homologue of Nar1p was shown previously to bind prenylated prelamin A in the nucleus. However, yeast neither exhibits hydrogenase activity nor contains nuclear lamins. Here, we demonstrate that Nar1p is predominantly located in the cytosol and contains two adjacent iron–sulphur (Fe/S) clusters. Assembly of its Fe/S clusters crucially depends on components of the mitochondrial Fe/S cluster biosynthesis apparatus such as the cysteine desulphurase Nfs1p, the ferredoxin Yah1p and the ABC transporter Atm1p. Using functional studies in vivo, we show that Nar1p is required for maturation of cytosolic and nuclear, but not of mitochondrial, Fe/S proteins. Nar1p‐depleted cells do not accumulate iron in mitochondria, distinguishing these cells from mutants in components of the mitochondrial Fe/S cluster biosynthesis apparatus. In conclusion, Nar1p represents a crucial, novel component of the emerging cytosolic Fe/S protein assembly machinery that catalyses an essential and ancient process in eukaryotes.


Journal of Bacteriology | 2001

Anaerobic Initial Reaction of n-Alkanes in a Denitrifying Bacterium: Evidence for (1-Methylpentyl)succinate as Initial Product and for Involvement of an Organic Radical in n-Hexane Metabolism

Ralf Rabus; Heinz Wilkes; Astrid Behrends; Antje Armstroff; Thomas Fischer; Antonio J. Pierik; Friedrich Widdel

A novel type of denitrifying bacterium (strain HxN1) with the capacity to oxidize n-alkanes anaerobically with nitrate as the electron acceptor to CO(2) formed (1-methylpentyl)succinate (MPS) during growth on n-hexane as the only organic substrate under strict exclusion of air. Identification of MPS by gas chromatography-mass spectrometry was based on comparison with a synthetic standard. MPS was not formed during anaerobic growth on n-hexanoate. Anaerobic growth with [1-(13)C]n-hexane or d(14)-n-hexane led to a 1-methylpentyl side chain in MPS with one (13)C atom or 13 deuterium atoms, respectively. This indicates that the 1-methylpentyl side chain originates directly from n-hexane. Electron paramagnetic resonance spectroscopy revealed the presence of an organic radical in n-hexane-grown cells but not in n-hexanoate-grown cells. Results point at a mechanistic similarity between the anaerobic initial reaction of n-hexane and that of toluene, even though n-hexane is much less reactive; the described initial reaction of toluene in anaerobic bacteria is an addition to fumarate via a radical mechanism yielding benzylsuccinate. We conclude that n-hexane is activated at its second carbon atom by a radical reaction and presumably added to fumarate as a cosubstrate, yielding MPS as the first stable product. When 2,3-d(2)-fumarate was added to cultures growing on unlabeled n-hexane, 3-d(1)-MPS rather than 2,3-d(2)-MPS was detected, indicating loss of one deuterium atom by an as yet unknown mechanism.


Science | 2012

MMS19 Assembles Iron-Sulfur Proteins Required for DNA Metabolism and Genomic Integrity

Oliver Stehling; Ajay A. Vashisht; Judita Mascarenhas; Zophonias O. Jonsson; Tanu Sharma; Daili J. A. Netz; Antonio J. Pierik; James A. Wohlschlegel; Roland Lill

MMS19 Joins the CIA Iron-sulfur (Fe-S) proteins play a critical role in cell metabolism and particularly in DNA repair and replication. Mutants in eukaryotic gene MMS19 are particularly sensitive to DNA damaging agents, suggesting that it is involved in DNA repair, but the mutations can also have other wide-ranging effects on the cell (see the Perspective by Gottschling). Now, Stehling et al. (p. 195, published online 7 June) and Gari et al. (p. 243, published online 7 June) show that in both yeast and humans, MMS19 functions as part of the cytosolic Fe-S protein assembly (CIA) machinery. The MMS19 is part of a specialized CIA targeting complex that plays a role late in cytosolic Fe-S protein assembly to direct Fe-S cluster transfer from the CIA scaffold complex to a subset of Fe-S proteins, including a number associated with DNA metabolism. A protein thought to be involved in DNA repair is, in fact, responsible for inserting iron-sulfur clusters into enzymes. Instability of the nuclear genome is a hallmark of cancer and aging. MMS19 protein has been linked to maintenance of genomic integrity, but the molecular basis of this connection is unknown. Here, we identify MMS19 as a member of the cytosolic iron-sulfur protein assembly (CIA) machinery. MMS19 functions as part of the CIA targeting complex that specifically interacts with and facilitates iron-sulfur cluster insertion into apoproteins involved in methionine biosynthesis, DNA replication, DNA repair, and telomere maintenance. MMS19 thus serves as an adapter between early-acting CIA components and a subset of cellular iron-sulfur proteins. The function of MMS19 in the maturation of crucial components of DNA metabolism may explain the sensitivity of MMS19 mutants to DNA damage and the presence of extended telomeres.


Molecular and Cellular Biology | 2009

Human Ind1, an Iron-Sulfur Cluster Assembly Factor for Respiratory Complex I

Alex D. Sheftel; Oliver Stehling; Antonio J. Pierik; Daili J. A. Netz; Stefan Kerscher; Hans-Peter Elsässer; Ilka Wittig; Janneke Balk; Ulrich Brandt; Roland Lill

ABSTRACT Respiratory complex I (NADH:ubiquinone oxidoreductase) is a large mitochondrial inner membrane enzyme consisting of 45 subunits and 8 iron-sulfur (Fe/S) clusters. While complex I dysfunction is the most common reason for mitochondrial diseases, the assembly of complex I and its Fe/S cofactors remains elusive. Here, we identify the human mitochondrial P-loop NTPase, designated huInd1, that is critically required for the assembly of complex I. huInd1 can bind an Fe/S cluster via a conserved CXXC motif in a labile fashion. Knockdown of huInd1 in HeLa cells by RNA interference technology led to strong decreases in complex I protein and activity levels, remodeling of respiratory supercomplexes, and alteration of mitochondrial morphology. In addition, huInd1 depletion resulted in massive decreases in several subunits (NDUFS1, NDUFV1, NDUFS3, and NDUFA13) of the peripheral arm of complex I, with the concomitant appearance of a 450-kDa subcomplex representing part of the membrane arm. By a novel radiolabeling technique, the amount of iron associated with complex I was also shown to reflect the dependence of this enzyme on huInd1 for assembly. Together, these data identify huInd1 as a new assembly factor for human respiratory complex I with a possible role in the delivery of one or more Fe/S clusters to complex I subunits.


Nature Chemical Biology | 2010

Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis

Daili J. A. Netz; Martin Stümpfig; Carole Doré; Ulrich Mühlenhoff; Antonio J. Pierik; Roland Lill

Cytosolic and nuclear iron-sulfur (Fe-S) proteins play key roles in processes such as ribosome maturation, transcription and DNA repair-replication. For biosynthesis of their Fe-S clusters, a dedicated cytosolic Fe-S protein assembly (CIA) machinery is required. Here, we identify the essential flavoprotein Tah18 as a previously unrecognized CIA component and show by cell biological, biochemical and spectroscopic approaches that the complex of Tah18 and the CIA protein Dre2 is part of an electron transfer chain functioning in an early step of cytosolic Fe-S protein biogenesis. Electrons are transferred from NADPH via the FAD- and FMN-containing Tah18 to the Fe-S clusters of Dre2. This electron transfer chain is required for assembly of target but not scaffold Fe-S proteins, suggesting a need for reduction in the generation of stably inserted Fe-S clusters. The pathway is conserved in eukaryotes, as human Ndor1-Ciapin1 proteins can functionally replace yeast Tah18-Dre2.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis

Alex D. Sheftel; Oliver Stehling; Antonio J. Pierik; Hans-Peter Elsässer; Ulrich Mühlenhoff; Holger Webert; Anna Hobler; Frank Hannemann; Rita Bernhardt; Roland Lill

Mammalian adrenodoxin (ferredoxin 1; Fdx1) is essential for the synthesis of various steroid hormones in adrenal glands. As a member of the [2Fe-2S] cluster-containing ferredoxin family, Fdx1 reduces mitochondrial cytochrome P450 enzymes, which then catalyze; e.g., the conversion of cholesterol to pregnenolone, aldosterone, and cortisol. The high protein sequence similarity between Fdx1 and its yeast adrenodoxin homologue (Yah1) suggested that Fdx1, like Yah1, may be involved in the biosynthesis of heme A and Fe/S clusters, two versatile and essential protein cofactors. Our study, employing RNAi technology to deplete human Fdx1, did not confirm this expectation. Instead, we identified a Fdx1-related mitochondrial protein, designated ferredoxin 2 (Fdx2) and found it to be essential for heme A and Fe/S protein biosynthesis. Unlike Fdx1, Fdx2 was unable to efficiently reduce mitochondrial cytochromes P450 and convert steroids, indicating that the two ferredoxin isoforms are highly specific for their substrates in distinct biochemical pathways. Moreover, Fdx2 deficiency had a severe impact, via impaired Fe/S protein biogenesis, on cellular iron homeostasis, leading to increased cellular iron uptake and iron accumulation in mitochondria. We conclude that mammals depend on two distinct mitochondrial ferredoxins for the specific production of either steroid hormones or heme A and Fe/S proteins.


The EMBO Journal | 2008

The iron-sulphur protein Ind1 is required for effective complex I assembly.

Katrine Bych; Stefan Kerscher; Daili J. A. Netz; Antonio J. Pierik; Klaus Zwicker; Martijn A. Huynen; Roland Lill; Ulrich Brandt; Janneke Balk

NADH:ubiquinone oxidoreductase (complex I) of the mitochondrial inner membrane is a multi‐subunit protein complex containing eight iron–sulphur (Fe–S) clusters. Little is known about the assembly of complex I and its Fe–S clusters. Here, we report the identification of a mitochondrial protein with a nucleotide‐binding domain, named Ind1, that is required specifically for the effective assembly of complex I. Deletion of the IND1 open reading frame in the yeast Yarrowia lipolytica carrying an internal alternative NADH dehydrogenase resulted in slower growth and strongly decreased complex I activity, whereas the activities of other mitochondrial Fe–S enzymes, including aconitase and succinate dehydrogenase, were not affected. Two‐dimensional gel electrophoresis, in vitro activity tests and electron paramagnetic resonance signals of Fe–S clusters showed that only a minor fraction (∼20%) of complex I was assembled in the ind1 deletion mutant. Using in vivo and in vitro approaches, we found that Ind1 can bind a [4Fe–4S] cluster that was readily transferred to an acceptor Fe–S protein. Our data suggest that Ind1 facilitates the assembly of Fe–S cofactors and subunits of complex I.

Collaboration


Dive into the Antonio J. Pierik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wilfred R. Hagen

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge