Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daili J. A. Netz is active.

Publication


Featured researches published by Daili J. A. Netz.


Nature Chemical Biology | 2012

Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes

Daili J. A. Netz; Carrie M. Stith; Martin Stümpfig; Gabriele Köpf; Daniel Vogel; Heide M Genau; Joseph L. Stodola; Roland Lill; Peter M. J. Burgers; Antonio J. Pierik

The eukaryotic replicative DNA polymerases (Pol α, δ, and ε), and the major DNA mutagenesis enzyme Pol ζ contain two conserved cysteine-rich metal-binding motifs (CysA and CysB) in the C-terminal domain (CTD) of their catalytic subunits. Here, we demonstrate by in vivo and in vitro approaches the presence of an essential [4Fe-4S] cluster in the CysB motif of all four yeast B-family DNA polymerases. Loss of the [4Fe-4S] cofactor by cysteine ligand mutagenesis in Pol3 destabilized the CTD and abrogated interaction with the Pol31-Pol32 subunits. Reciprocally, overexpression of accessory subunits increased the amount of CTD-bound Fe-S cluster. This implies an important physiological role of the Fe-S cluster in polymerase complex stabilization. Further, we demonstrate that the Zn-binding CysA motif is required for PCNA-mediated Pol δ processivity. Together, our findings show that the function of eukaryotic replicative DNA polymerases crucially depends on different metallocenters for accessory subunit recruitment and for replisome stability.


The EMBO Journal | 2005

Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rli1p and mitochondria.

Gyula Kispal; Katalin Sipos; Heike Lange; Zsuzsanna Fekete; Tibor Bedekovics; Tamás Janáky; Jochen Bassler; Daili J. A. Netz; Janneke Balk; Carmen Rotte; Roland Lill

Mitochondria perform a central function in the biogenesis of cellular iron–sulphur (Fe/S) proteins. It is unknown to date why this biosynthetic pathway is indispensable for life, the more so as no essential mitochondrial Fe/S proteins are known. Here, we show that the soluble ATP‐binding cassette (ABC) protein Rli1p carries N‐terminal Fe/S clusters that require the mitochondrial and cytosolic Fe/S protein biogenesis machineries for assembly. Mutations in critical cysteine residues of Rli1p abolish association with Fe/S clusters and lead to loss of cell viability. Hence, the essential character of Fe/S clusters in Rli1p explains the indispensable character of mitochondria in eukaryotes. We further report that Rli1p is associated with ribosomes and with Hcr1p, a protein involved in rRNA processing and translation initiation. Depletion of Rli1p causes a nuclear export defect of the small and large ribosomal subunits and subsequently a translational arrest. Thus, ribosome biogenesis and function are intimately linked to the crucial role of mitochondria in the maturation of the essential Fe/S protein Rli1p.


The EMBO Journal | 2004

The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron–sulphur proteins

Janneke Balk; Antonio J. Pierik; Daili J. A. Netz; Ulrich Mühlenhoff; Roland Lill

The genome of the yeast Saccharomyces cerevisiae encodes the essential protein Nar1p that is conserved in virtually all eukaryotes and exhibits striking sequence similarity to bacterial iron‐only hydrogenases. A human homologue of Nar1p was shown previously to bind prenylated prelamin A in the nucleus. However, yeast neither exhibits hydrogenase activity nor contains nuclear lamins. Here, we demonstrate that Nar1p is predominantly located in the cytosol and contains two adjacent iron–sulphur (Fe/S) clusters. Assembly of its Fe/S clusters crucially depends on components of the mitochondrial Fe/S cluster biosynthesis apparatus such as the cysteine desulphurase Nfs1p, the ferredoxin Yah1p and the ABC transporter Atm1p. Using functional studies in vivo, we show that Nar1p is required for maturation of cytosolic and nuclear, but not of mitochondrial, Fe/S proteins. Nar1p‐depleted cells do not accumulate iron in mitochondria, distinguishing these cells from mutants in components of the mitochondrial Fe/S cluster biosynthesis apparatus. In conclusion, Nar1p represents a crucial, novel component of the emerging cytosolic Fe/S protein assembly machinery that catalyses an essential and ancient process in eukaryotes.


Science | 2012

MMS19 Assembles Iron-Sulfur Proteins Required for DNA Metabolism and Genomic Integrity

Oliver Stehling; Ajay A. Vashisht; Judita Mascarenhas; Zophonias O. Jonsson; Tanu Sharma; Daili J. A. Netz; Antonio J. Pierik; James A. Wohlschlegel; Roland Lill

MMS19 Joins the CIA Iron-sulfur (Fe-S) proteins play a critical role in cell metabolism and particularly in DNA repair and replication. Mutants in eukaryotic gene MMS19 are particularly sensitive to DNA damaging agents, suggesting that it is involved in DNA repair, but the mutations can also have other wide-ranging effects on the cell (see the Perspective by Gottschling). Now, Stehling et al. (p. 195, published online 7 June) and Gari et al. (p. 243, published online 7 June) show that in both yeast and humans, MMS19 functions as part of the cytosolic Fe-S protein assembly (CIA) machinery. The MMS19 is part of a specialized CIA targeting complex that plays a role late in cytosolic Fe-S protein assembly to direct Fe-S cluster transfer from the CIA scaffold complex to a subset of Fe-S proteins, including a number associated with DNA metabolism. A protein thought to be involved in DNA repair is, in fact, responsible for inserting iron-sulfur clusters into enzymes. Instability of the nuclear genome is a hallmark of cancer and aging. MMS19 protein has been linked to maintenance of genomic integrity, but the molecular basis of this connection is unknown. Here, we identify MMS19 as a member of the cytosolic iron-sulfur protein assembly (CIA) machinery. MMS19 functions as part of the CIA targeting complex that specifically interacts with and facilitates iron-sulfur cluster insertion into apoproteins involved in methionine biosynthesis, DNA replication, DNA repair, and telomere maintenance. MMS19 thus serves as an adapter between early-acting CIA components and a subset of cellular iron-sulfur proteins. The function of MMS19 in the maturation of crucial components of DNA metabolism may explain the sensitivity of MMS19 mutants to DNA damage and the presence of extended telomeres.


Molecular and Cellular Biology | 2009

Human Ind1, an Iron-Sulfur Cluster Assembly Factor for Respiratory Complex I

Alex D. Sheftel; Oliver Stehling; Antonio J. Pierik; Daili J. A. Netz; Stefan Kerscher; Hans-Peter Elsässer; Ilka Wittig; Janneke Balk; Ulrich Brandt; Roland Lill

ABSTRACT Respiratory complex I (NADH:ubiquinone oxidoreductase) is a large mitochondrial inner membrane enzyme consisting of 45 subunits and 8 iron-sulfur (Fe/S) clusters. While complex I dysfunction is the most common reason for mitochondrial diseases, the assembly of complex I and its Fe/S cofactors remains elusive. Here, we identify the human mitochondrial P-loop NTPase, designated huInd1, that is critically required for the assembly of complex I. huInd1 can bind an Fe/S cluster via a conserved CXXC motif in a labile fashion. Knockdown of huInd1 in HeLa cells by RNA interference technology led to strong decreases in complex I protein and activity levels, remodeling of respiratory supercomplexes, and alteration of mitochondrial morphology. In addition, huInd1 depletion resulted in massive decreases in several subunits (NDUFS1, NDUFV1, NDUFS3, and NDUFA13) of the peripheral arm of complex I, with the concomitant appearance of a 450-kDa subcomplex representing part of the membrane arm. By a novel radiolabeling technique, the amount of iron associated with complex I was also shown to reflect the dependence of this enzyme on huInd1 for assembly. Together, these data identify huInd1 as a new assembly factor for human respiratory complex I with a possible role in the delivery of one or more Fe/S clusters to complex I subunits.


Nature Chemical Biology | 2010

Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis

Daili J. A. Netz; Martin Stümpfig; Carole Doré; Ulrich Mühlenhoff; Antonio J. Pierik; Roland Lill

Cytosolic and nuclear iron-sulfur (Fe-S) proteins play key roles in processes such as ribosome maturation, transcription and DNA repair-replication. For biosynthesis of their Fe-S clusters, a dedicated cytosolic Fe-S protein assembly (CIA) machinery is required. Here, we identify the essential flavoprotein Tah18 as a previously unrecognized CIA component and show by cell biological, biochemical and spectroscopic approaches that the complex of Tah18 and the CIA protein Dre2 is part of an electron transfer chain functioning in an early step of cytosolic Fe-S protein biogenesis. Electrons are transferred from NADPH via the FAD- and FMN-containing Tah18 to the Fe-S clusters of Dre2. This electron transfer chain is required for assembly of target but not scaffold Fe-S proteins, suggesting a need for reduction in the generation of stably inserted Fe-S clusters. The pathway is conserved in eukaryotes, as human Ndor1-Ciapin1 proteins can functionally replace yeast Tah18-Dre2.


The EMBO Journal | 2008

The iron-sulphur protein Ind1 is required for effective complex I assembly.

Katrine Bych; Stefan Kerscher; Daili J. A. Netz; Antonio J. Pierik; Klaus Zwicker; Martijn A. Huynen; Roland Lill; Ulrich Brandt; Janneke Balk

NADH:ubiquinone oxidoreductase (complex I) of the mitochondrial inner membrane is a multi‐subunit protein complex containing eight iron–sulphur (Fe–S) clusters. Little is known about the assembly of complex I and its Fe–S clusters. Here, we report the identification of a mitochondrial protein with a nucleotide‐binding domain, named Ind1, that is required specifically for the effective assembly of complex I. Deletion of the IND1 open reading frame in the yeast Yarrowia lipolytica carrying an internal alternative NADH dehydrogenase resulted in slower growth and strongly decreased complex I activity, whereas the activities of other mitochondrial Fe–S enzymes, including aconitase and succinate dehydrogenase, were not affected. Two‐dimensional gel electrophoresis, in vitro activity tests and electron paramagnetic resonance signals of Fe–S clusters showed that only a minor fraction (∼20%) of complex I was assembled in the ind1 deletion mutant. Using in vivo and in vitro approaches, we found that Ind1 can bind a [4Fe–4S] cluster that was readily transferred to an acceptor Fe–S protein. Our data suggest that Ind1 facilitates the assembly of Fe–S cofactors and subunits of complex I.


Trends in Cell Biology | 2014

Maturation of cytosolic and nuclear iron–sulfur proteins

Daili J. A. Netz; Judita Mascarenhas; Oliver Stehling; Antonio J. Pierik; Roland Lill

Eukaryotic cells contain numerous cytosolic and nuclear iron-sulfur (Fe/S) proteins that perform key functions in metabolic catalysis, iron regulation, protein translation, DNA synthesis, and DNA repair. Synthesis of Fe/S clusters and their insertion into apoproteins are essential for viability and are conserved in eukaryotes. The process is catalyzed in two major steps by the CIA (cytosolic iron-sulfur protein assembly) machinery encompassing nine known proteins. First, a [4Fe-4S] cluster is assembled on a scaffold complex. This step requires a sulfur-containing compound from mitochondria and reducing equivalents from an electron transfer chain. Second, the Fe/S cluster is transferred from the scaffold to specific apoproteins by the CIA targeting complex. This review summarizes our molecular knowledge on CIA protein function during the assembly process.


Molecular and Cellular Biology | 2005

The Essential WD40 Protein Cia1 Is Involved in a Late Step of Cytosolic and Nuclear Iron-Sulfur Protein Assembly

Janneke Balk; Daili J. A. Netz; Katharina Tepper; Antonio J. Pierik; Roland Lill

ABSTRACT The assembly of cytosolic and nuclear iron-sulfur (Fe/S) proteins in yeast is dependent on the iron-sulfur cluster assembly and export machineries in mitochondria and three recently identified extramitochondrial proteins, the P-loop NTPases Cfd1 and Nbp35 and the hydrogenase-like Nar1. However, the molecular mechanism of Fe/S protein assembly in the cytosol is far from being understood, and more components are anticipated to take part in this process. Here, we have identified and functionally characterized a novel WD40 repeat protein, designated Cia1, as an essential component required for Fe/S cluster assembly in vivo on cytosolic and nuclear, but not mitochondrial, Fe/S proteins. Surprisingly, Nbp35 and Nar1, themselves Fe/S proteins, could assemble their Fe/S clusters in the absence of Cia1, demonstrating that these components act before Cia1. Consequently, Cia1 is involved in a late step of Fe/S cluster incorporation into target proteins. Coimmunoprecipitation assays demonstrated a specific interaction between Cia1 and Nar1. In contrast to the mostly cytosolic Nar1, Cia1 is preferentially localized to the nucleus, suggesting an additional function of Cia1. Taken together, our results indicate that Cia1 is a new member of the cytosolic Fe/S protein assembly (CIA) machinery participating in a step after Nbp35 and Nar1.


Journal of Molecular Biology | 2002

Biochemical characterisation and genetic analysis of aureocin A53, a new, atypical bacteriocin from Staphylococcus aureus.

Daili J. A. Netz; Regula Pohl; Annette G. Beck-Sickinger; Thorsten Selmer; Antonio J. Pierik; Maria do Carmo de Freire Bastos; Hans-Georg Sahl

Aureocin A53 is produced by Staphylococcus aureus A53. It is encoded on a 10.4 kb plasmid, pRJ9, and is active against Listeria monocytogenes. Aureocin A53 is a highly cationic 51-residue peptide containing ten lysine and five tryptophan residues. Aureocin A53 was purified to homogeneity by hydrophobic-interaction, cation-exchange, and reverse-phase chromatography. MALDI-TOF mass spectrometry yielded a molecular mass of 6012.5 Da, which was 28 Da higher than predicted from the structural gene sequence of the bacteriocin. The mass increment resulted from an N-formylmethionine residue, indicating that the aureocin A53 is synthesised and secreted without a typical bacteriocin leader sequence or sec-dependent signal peptide. The structural identity of aureocin A53 was verified by Edman sequencing after de-blocking with cyanogen bromide and extensive mass spectrometry analysis of enzymatically and laser-generated fragments. The complete sequence of pRJ9 was determined and none of the open reading frames identified in the vicinity of the structural gene aucA showed similarity to genes that are typically found in bacteriocin gene clusters. Thus, neither a dedicated protease or transporter, nor modifying enzymes and regulatory elements seemed to be involved in the production of aureocin A53. Further unique features that distinguish aureocin A53 from other peptide bacteriocins include remarkable protease stability and a defined, rigid structure in aqueous solution.

Collaboration


Dive into the Daili J. A. Netz's collaboration.

Top Co-Authors

Avatar

Antonio J. Pierik

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge