Antonio J. Rivera
University of Jaén
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonio J. Rivera.
Information Sciences | 2010
Francisco José Berlanga; Antonio J. Rivera; M. J. del Jesus; Francisco Herrera
In this paper we propose GP-COACH, a Genetic Programming-based method for the learning of COmpact and ACcurate fuzzy rule-based classification systems for High-dimensional problems. GP-COACH learns disjunctive normal form rules (generated by means of a context-free grammar) coded as one rule per tree. The population constitutes the rule base, so it is a genetic cooperative-competitive learning approach. GP-COACH uses a token competition mechanism to maintain the diversity of the population and this obliges the rules to compete and cooperate among themselves and allows the obtaining of a compact set of fuzzy rules. The results obtained have been validated by the use of non-parametric statistical tests, showing a good performance in terms of accuracy and interpretability.
Neurocomputing | 2015
Francisco Charte; Antonio J. Rivera; María José del Jesús; Francisco Herrera
The purpose of this paper is to analyze the imbalanced learning task in the multilabel scenario, aiming to accomplish two different goals. The first one is to present specialized measures directed to assess the imbalance level in multilabel datasets (MLDs). Using these measures we will be able to conclude which MLDs are imbalanced, and therefore would need an appropriate treatment. The second objective is to propose several algorithms designed to reduce the imbalance in MLDs in a classifier-independent way, by means of resampling techniques. Two different approaches to divide the instances in minority and majority groups are studied. One of them considers each label combination as class identifier, whereas the other one performs an individual evaluation of each label imbalance level. A random undersampling and a random oversampling algorithm are proposed for each approach, giving as result four different algorithms. All of them are experimentally tested and their effectiveness is statistically evaluated. From the results obtained, a set of guidelines directed to show when these methods should be applied is also provided.
soft computing | 2007
Antonio J. Rivera; Ignacio Rojas; Julio Ortega; M. J. del Jesus
This paper presents a new multiobjective cooperative–coevolutive hybrid algorithm for the design of a Radial Basis Function Network (RBFN). This approach codifies a population of Radial Basis Functions (RBFs) (hidden neurons), which evolve by means of cooperation and competition to obtain a compact and accurate RBFN. To evaluate the significance of a given RBF in the whole network, three factors have been proposed: the basis function’s contribution to the network’s output, the error produced in the basis function radius, and the overlapping among RBFs. To achieve an RBFN composed of RBFs with proper values for these quality factors our algorithm follows a multiobjective approach in the selection process. In the design process, a Fuzzy Rule Based System (FRBS) is used to determine the possibility of applying operators to a certain RBF. As the time required by our evolutionary algorithm to converge is relatively small, it is possible to get a further improvement of the solution found by using a local minimization algorithm (for example, the Levenberg–Marquardt method). In this paper the results of applying our methodology to function approximation and time series prediction problems are also presented and compared with other alternatives proposed in the bibliography.
Knowledge Based Systems | 2015
Francisco Charte; Antonio J. Rivera; María José del Jesús; Francisco Herrera
Abstract Learning from imbalanced data is a problem which arises in many real-world scenarios, so does the need to build classifiers able to predict more than one class label simultaneously (multilabel classification). Dealing with imbalance by means of resampling methods is an approach that has been deeply studied lately, primarily in the context of traditional (non-multilabel) classification. In this paper the process of synthetic instance generation for multilabel datasets (MLDs) is studied and MLSMOTE (Multilabel Synthetic Minority Over-sampling Technique), a new algorithm aimed to produce synthetic instances for imbalanced MLDs, is proposed. An extensive review on how imbalance in the multilabel context has been tackled in the past is provided, along with a thorough experimental study aimed to verify the benefits of the proposed algorithm. Several multilabel classification algorithms and other multilabel oversampling methods are considered, as well as ensemble-based algorithms for imbalanced multilabel classification. The empirical analysis shows that MLSMOTE is able to improve the classification results produced by existent proposals.
soft computing | 2010
María Dolores Pérez-Godoy; Antonio J. Rivera; Francisco José Berlanga; María José del Jesús
This paper presents a new evolutionary cooperative–competitive algorithm for the design of Radial Basis Function Networks (RBFNs) for classification problems. The algorithm, CO2RBFN, promotes a cooperative–competitive environment where each individual represents a radial basis function (RBF) and the entire population is responsible for the final solution. The proposal considers, in order to measure the credit assignment of an individual, three factors: contribution to the output of the complete RBFN, local error and overlapping. In addition, to decide the operators’ application probability over an RBF, the algorithm uses a Fuzzy Rule Based System. It must be highlighted that the evolutionary algorithm considers a distance measure which deals, without loss of information, with differences between nominal features which are very usual in classification problems. The precision and complexity of the network obtained by the algorithm are compared with those obtained by different soft computing methods through statistical tests. This study shows that CO2RBFN obtains RBFNs with an appropriate balance between accuracy and simplicity, outperforming the other methods considered.
hybrid artificial intelligence systems | 2013
Francisco Charte; Antonio J. Rivera; María José del Jesús; Francisco Herrera
The process of learning from imbalanced datasets has been deeply studied for binary and multi-class classification. This problem also affects to multi-label datasets. Actually, the imbalance level in multi-label datasets uses to be much larger than in binary or multi-class datasets. Notwithstanding, the proposals on how to measure and deal with imbalanced datasets in multi-label classification are scarce.
Expert Systems With Applications | 2013
Antonio J. Rivera; B. García-Domingo; M. J. del Jesus; J. Aguilera
Concentrating Photovoltaic (CPV) technology attempts to optimize the efficiency of solar energy production systems. As conventional Photovoltaic (PV) technology, suffers from variability in its production and needs models for determining the exact module performance. There are several problems when analyzing CPV systems performance with traditional techniques due to absence of standardization. In this sense it is remarkable the importance for the emerging CPV technology, of the existence of models which allow the prediction of modules performance from initial atmospheric conditions. In this paper, a CPV module is studied by means of atmospheric conditions obtained using an automatic test and measuring system developed by the authors. The characterization of the CPV module is carried out considering incident normal irradiance, ambient temperature, spectral irradiance distribution and wind speed. CO^2RBFN, a cooperative-competitive algorithm for the design of radial basis neural networks, is adapted and applied to these data obtaining a model with a good level of accuracy on test data, improving the results obtained by other methods considered in the experimental comparison. These results are promising and the obtained model could be used to work out the maximum power at the CPV reporting conditions and to analyze the performance of the module under any conditions and at any moment.
Applied Soft Computing | 2014
María Dolores Pérez-Godoy; Antonio J. Rivera; Cristóbal J. Carmona; M. J. del Jesus
Graphical abstractDisplay Omitted HighlightsWe present a study about the performance of two classical weight training methods of Radial Basis Function Networks (RBFN), Least Mean Square (LMS) and Singular Value Decomposition (SVD), applied to classification problems, when the data-sets are imbalanced.These methods are tested with representative RBFN design paradigms: Clustering, Incremental, Genetic and CO2RBFN (a cooperative-competitive method proposed by the authors).The results obtained, statistically validated, show that SVD outperforms LMS, when the imbalance ratio of data-sets is low but when the imbalance ratio of these data sets grows, LMS outperforms SVD. Nowadays, many real applications comprise data-sets where the distribution of the classes is significantly different. These data-sets are commonly known as imbalanced data-sets. Traditional classifiers are not able to deal with these kinds of data-sets because they tend to classify only majority classes, obtaining poor results for minority classes. The approaches that have been proposed to address this problem can be categorized into three types: resampling methods, algorithmic adaptations and cost sensitive techniques.Radial Basis Function Networks (RBFNs), artificial neural networks composed of local models or RBFs, have demonstrated their efficiency in different machine learning areas. Centers, widths and output weights for the RBFs must be determined when designing RBFNs.Taking into account the locally tuned response of RBFs, the objective of this paper is to study the influence of global and local paradigms on the weights training phase, within the RBFNs design methodology, for imbalanced data-sets. Least Mean Square and the Singular Value Decomposition have been chosen as representatives of local and global weights training paradigms respectively. These learning algorithms are inserted into classical RBFN design methods that are run on imbalanced data-sets and also on these data-sets preprocessed with re-balance techniques. After applying statistical tests to the results obtained, some guidelines about the RBFN design methodology for imbalanced data-sets are provided.
hybrid artificial intelligence systems | 2014
Francisco Charte; Antonio J. Rivera; María José del Jesús; Francisco Herrera
In the context of multilabel classification, the learning from imbalanced data is getting considerable attention recently. Several algorithms to face this problem have been proposed in the late five years, as well as various measures to assess the imbalance level. Some of the proposed methods are based on resampling techniques, a very well-known approach whose utility in traditional classification has been proven. This paper aims to describe how a specific characteristic of multilabel datasets (MLDs), the level of concurrence among imbalanced labels, could have a great impact in resampling algorithms behavior. Towards this goal, a measure named SCUMBLE, designed to evaluate this concurrence level, is proposed and its usefulness is experimentally tested. As a result, a straightforward guideline on the effectiveness of multilabel resampling algorithms depending on MLDs characteristics can be inferred.
intelligent data engineering and automated learning | 2014
Francisco Charte; Antonio J. Rivera; María José del Jesús; Francisco Herrera
Learning from imbalanced multilabel data is a challenging task that has attracted considerable attention lately. Some resampling algorithms used in traditional classification, such as random undersampling and random oversampling, have been already adapted in order to work with multilabel datasets.