Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio Lagares is active.

Publication


Featured researches published by Antonio Lagares.


Applied Microbiology and Biotechnology | 2009

Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera.

Verónica Sgroy; Fabricio Cassán; Oscar Masciarelli; María Florencia Del Papa; Antonio Lagares; Virginia Luna

This study was designed to isolate and characterize endophytic bacteria from halophyte Prosopis strombulifera grown under extreme salinity and to evaluate in vitro the bacterial mechanisms related to plant growth promotion or stress homeostasis regulation. Isolates obtained from P. strombulifera were compared genotypically by BOX-polymerase chain reaction, grouped according to similarity, and identified by amplification and partial sequences of 16S DNAr. Isolates were grown until exponential growth phase to evaluate the atmospheric nitrogen fixation, phosphate solubilization, siderophores, and phytohormones, such as indole-3-acetic acid, zeatin, gibberellic acid and abscisic acid production, as well as antifungal, protease, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. A total of 29 endophytic strains were grouped into seven according to similarity. All bacteria were able to grow and to produce some phytohormone in chemically defined medium with or without addition of a nitrogen source. Only one was able to produce siderophores, and none of them solubilized phosphate. ACC deaminase activity was positive for six strains. Antifungal and protease activity were confirmed for two of them. In this work, we discuss the possible implications of these bacterial mechanisms on the plant growth promotion or homeostasis regulation in natural conditions.


Molecular Plant-microbe Interactions | 1998

A Sinorhizobium meliloti Lipopolysaccharide Mutant Induces Effective Nodules on the Host Plant Medicago sativa (Alfalfa) but Fails to Establish a Symbiosis with Medicago truncatula

Karsten Niehaus; Antonio Lagares; Alfred Pühler

The specific Sinorhizobium meliloti lipopolysaccharide (LPS) mutant Rm6963 (A. Lagares, G. Caetano Anolles, K. Niehaus, J. Lorenzen, H. D. Ljunggren, A. Puhler, and G. Favelukes, J. Bacteriol. 174:5941-5952, 1992) was shown to be mutated in a region corresponding to a cloned 5-kb SstI DNA fragment that was able to complement the lpsB and lpsC mutants of S. meliloti described by Clover et al. (R. H. Clover, J. Kieber, and E. R. Signer, J. Bacteriol. 171:3961-3967, 1989). Sodium dodecyl sulfate polyacryla-mide electrophoresis revealed that the LPS-I and LPS-II fractions of the LPS mutant Rm6963 were shifted to lower molecular weights. While the majority of the Medicago spp. tested established an effective symbiosis with both the S. meliloti wild-type Rm2011 and the LPS mutant Rm6963, the latter induced ineffective nodules on M. truncatula. A light- and electron-microscopic analysis of the ineffective M. truncatula root nodules revealed that the bacteria were released from the infection threads but failed to...


Fems Microbiology Letters | 2004

Disruption of dTDP-rhamnose biosynthesis modifies lipopolysaccharide core, exopolysaccharide production, and root colonization in Azospirillum brasilense

Edgardo Jofré; Antonio Lagares; Gladys Mori

The interaction between Azospirillum brasilense and plants is not fully understood, although several bacterial surface components like exopolysaccharides (EPS), flagella, and capsular polysaccharides are required for attachment and colonization. While in other plant-bacteria associations (Rhizobium-legume, Pseudomonas-potato), lipopolysaccharides (LPS) play a key role in the establishment of an effective association, their role in the root colonization by Azospirillum had not been determined. In this study, we isolated a Tn5 mutant of A. brasilense Cd (EJ1) with an apparently modified LPS core structure, non-mucoid colony morphology, increased EPS production, and affected in maize root colonization. A 3790-bp region revealed the presence of three complete open reading frames designated rmlC, rmlB and rmlD. The beginning of a fourth open reading frame was found and designated rmlA. These genes are organized in a cluster which shows homology to the cluster involved in the synthesis of dTDP-rhamnose in other bacteria. Additionally, the analysis of the monosaccharide composition of LPSs showed a diminution of rhamnose compared to the wild-type strain.


Current Microbiology | 1999

Release of Outer Membrane Vesicles from Bordetella pertussis

Daniela Hozbor; Julieta Fernández; Antonio Lagares; Nicole Guiso; Osvaldo Yantorno

Abstract. The aim of the study reported here was to investigate the production of Bordetella pertussis outer membrane vesicles (OMVs). Numerous vesicles released from cells grown in Stainer-Scholte liquid medium were observed. The formation of similar vesicle-like structures could also be artificially induced by sonication of concentrated bacterial suspensions. Immunoblot analysis showed that OMVs contain adenylate cyclase-hemolysin (AC-Hly), among other polypeptides, as well as the lipopolysaccharide (LPS). Experiments carried out employing purified AC-Hly and OMVs isolated from B. pertussis AC-Hly− showed that AC-Hly is an integral component of the vesicles. OMVs reported here contain several protective immunogens and might be considered a possible basic material for the development of acellular pertussis vaccines.


Frontiers in Microbiology | 2016

Back to the Future of Soil Metagenomics

Joseph Nesme; Wafa Achouak; Spiros N. Agathos; Mark J. Bailey; Petr Baldrian; Dominique Brunel; Åsa Frostegård; Thierry Heulin; Janet K. Jansson; Edouard Jurkevitch; Kristiina Kruus; George A. Kowalchuk; Antonio Lagares; Hilary M. Lappin-Scott; Philippe Lemanceau; Denis Le Paslier; Ines Mandic-Mulec; J. Colin Murrell; David D. Myrold; Renaud Nalin; P. Nannipieri; Josh D. Neufeld; Fergal O'Gara; John Jacob Parnell; Alfred Pühler; Victor Satler Pylro; Juan L. Ramos; Luiz Fernando Wurdig Roesch; Michael Schloter; Christa Schleper

Direct extraction and characterization of microbial community DNA through PCR amplicon surveys and metagenomics has revolutionized the study of environmental microbiology and microbial ecology. In particular, metagenomic analysis of nucleic acids provides direct access to the genomes of the “uncultivated majority.” Accelerated by advances in sequencing technology, microbiologists have discovered more novel phyla, classes, genera, and genes from microorganisms in the first decade and a half of the twenty-first century than since these “many very little living animalcules” were first discovered by van Leeuwenhoek (Table 1). The unsurpassed diversity of soils promises continued exploration of a range of industrial, agricultural, and environmental functions. The ability to explore soil microbial communities with increasing capacity offers the highest promise for answering many outstanding who, what, where, when, why, and with whom questions such as: Which microorganisms are linked to which soil habitats? How do microbial abundances change with changing edaphic conditions? How do microbial assemblages interact and influence one another synergistically or antagonistically? What is the full extent of soil microbial diversity, both functionally and phylogenetically? What are the dynamics of microbial communities in space and time? How sensitive are microbial communities to a changing climate? What is the role of horizontal gene transfer in the stability of microbial communities? Do highly diverse microbial communities confer resistance and resilience in soils?


Journal of Bacteriology | 2001

Genetic Characterization of a Sinorhizobium meliloti Chromosomal Region Involved in Lipopolysaccharide Biosynthesis

Antonio Lagares; Daniela Hozbor; Karsten Niehaus; Augusto J.L. Pich Otero; Jens Lorenzen; Walter Arnold; Alfred Pühler

The genetic characterization of a 5.5-kb chromosomal region of Sinorhizobium meliloti 2011 that contains lpsB, a gene required for the normal development of symbiosis with Medicago spp., is presented. The nucleotide sequence of this DNA fragment revealed the presence of six genes: greA and lpsB, transcribed in the forward direction; and lpsE, lpsD, lpsC, and lrp, transcribed in the reverse direction. Except for lpsB, none of the lps genes were relevant for nodulation and nitrogen fixation. Analysis of the transcriptional organization of lpsB showed that greA and lpsB are part of separate transcriptional units, which is in agreement with the finding of a DNA stretch homologous to a “nonnitrogen” promoter consensus sequence between greA and lpsB. The opposite orientation of lpsB with respect to its first downstream coding sequence, lpsE, indicated that the altered LPS and the defective symbiosis of lpsB mutants are both consequences of a primary nonpolar defect in a single gene. Global sequence comparisons revealed that the greA-lpsB and lrp genes of S. meliloti have a genetic organization similar to that of their homologous loci in R. leguminosarum bv. viciae. In particular, high sequence similarity was found between the translation product of lpsB and a core-related biosynthetic mannosyltransferase of R. leguminosarum bv. viciae encoded by the lpcC gene. The functional relationship between these two genes was demonstrated in genetic complementation experiments in which the S. meliloti lpsB gene restored the wild-type LPS phenotype when introduced into lpcC mutants of R. leguminosarum. These results support the view that S. meliloti lpsB also encodes a mannosyltransferase that participates in the biosynthesis of the LPS core. Evidence is provided for the presence of other lpsB-homologous sequences in several members of the family Rhizobiaceae.


Pteridines | 2000

Photoinduced cleavage of plasmid DNA in the presence of pterin

Carolina Lorente; Andrés H. Thomas; Laura S. Villata; Daniela Hozbor; Antonio Lagares; Alberto L. Capparelli

Summary The photoinduced cleavage of plasmid DNA by UV -A light in the presence of pterin was investigated. Electrophoretic analysis of the irradiated plasmid pUCI8 in the presence of pterin showed that UV light of 350 nm induced the transformation of a significant proportion of the supercoiled plasmid to its relaxed form. A minor proportion of plasmid forms are also converted to the linear plasmid isomer at the longer irradiation times. All these transformations during irradiation can be observed in the absorption spectrum of DNA as function of time. Such spectral modifications correlated with the extent and the kinetics of plasmid relaxation, but not with the appearance of the linear plasmid. None of the exchanges were operative without the irradiation with UV-A light. Control experiments with pterin or plasmid DNA irradiated separately, showed no photochemical changes. Results taken together suggest that the observed changes in the supercoiled plasmid as well as the spectral modifications both derive from the generation of single-strand break in the DNA.


PLOS ONE | 2014

Cultivation-Independent Screening Revealed Hot Spots of IncP-1, IncP-7 and IncP-9 Plasmid Occurrence in Different Environmental Habitats

Simone Dealtry; Guo-Chun Ding; Viola Weichelt; Vincent Dunon; Andreas Schlüter; María Carla Martini; María Florencia Del Papa; Antonio Lagares; Gregory C. A. Amos; Elizabeth M. H. Wellington; William H. Gaze; Detmer Sipkema; Sara Sjöling; Dirk Springael; Holger Heuer; Jan Dirk van Elsas; Chris D. Thomas; Kornelia Smalla

IncP-1, IncP-7 and IncP-9 plasmids often carry genes encoding enzymes involved in the degradation of man-made and natural contaminants, thus contributing to bacterial survival in polluted environments. However, the lack of suitable molecular tools often limits the detection of these plasmids in the environment. In this study, PCR followed by Southern blot hybridization detected the presence of plasmid-specific sequences in total community (TC-) DNA or fosmid DNA from samples originating from different environments and geographic regions. A novel primer system targeting IncP-9 plasmids was developed and applied along with established primers for IncP-1 and IncP-7. Screening TC-DNA from biopurification systems (BPS) which are used on farms for the purification of pesticide-contaminated water revealed high abundances of IncP-1 plasmids belonging to different subgroups as well as IncP-7 and IncP-9. The novel IncP-9 primer-system targeting the rep gene of nine IncP-9 subgroups allowed the detection of a high diversity of IncP-9 plasmid specific sequences in environments with different sources of pollution. Thus polluted sites are “hot spots” of plasmids potentially carrying catabolic genes.


Fems Microbiology Letters | 2003

Identification of a transmissible plasmid from an Argentine Sinorhizobium meliloti strain which can be mobilised by conjugative helper functions of the European strain S. meliloti GR4

Mariano Pistorio; María Florencia Del Papa; Laura J. Balagué; Antonio Lagares

We describe in this work the identification and the conjugal properties of two cryptic plasmids present in the strain Sinorhizobium meliloti LPU88 isolated from an Argentine soil. One of the plasmids, pSmeLPU88b (22 kb), could be mobilised from different S. meliloti strains to other bacteria by conjugation only if the other plasmid, pSmeLPU88a (139 kb), was present. This latter plasmid, however, could not be transferred via conjugation (frequency <10(-9) transconjugants per recipient) contrasting with the conjugal system from the previously described strain GR4, where one plasmid is mobilisable and a second one (helper) is self-transmissible. Despite the differences between the two systems, the conjugative helper functions present in the cryptic plasmids of strain GR4 were active in the mobilisation of plasmid pSmeLPU88b from strain LPU88. Contrasting with this, plasmid pSmeLPU88b was not mobilised by the helper functions of the broad-host-range plasmid RP4. Eckhardt gel analysis showed that none of the plasmids from strain GR4 were excluded in the presence of plasmid pSmeLPU88b suggesting that they all belong to different incompatibility groups for replication. The small plasmid from strain LPU88, pSmeLPU88b, was only able to replicate in members of the Rhizobiaceae family such as Rhizobium leguminosarum, Rhizobium tropici and Agrobacterium tumefaciens, but not in Escherichia coli or Pseudomonas fluorescens. The observation suggests that most likely plasmid pSmeLPU88b was not received from a phylogenetically distant bacterium.


Infection and Immunity | 2002

In Vitro and In Vivo Characterization of a Bordetella bronchiseptica Mutant Strain with a Deep Rough Lipopolysaccharide Structure

Federico Sisti; Julieta Fernández; Antonio Lagares; Nicole Guiso; Daniela Hozbor

ABSTRACT Bordetella bronchiseptica is closely related to Bordetella pertussis, which produces respiratory disease primarily in mammals other than humans. However, its importance as a human pathogen is being increasingly recognized. Although a large amount of research on Bordetella has been generated regarding protein virulence factors, the participation of the surface lipopolysaccharide (LPS) during B. bronchiseptica infection is less understood. To get a better insight into this matter, we constructed and characterized the behavior of an LPS mutant with the deepest possible rough phenotype. We generated the defective mutant B. bronchiseptica LP39 on the waaC gene, which codes for a heptosyl transferase involved in the biosynthesis of the core region of the LPS molecule. Although in B. bronchiseptica LP39 the production of the principal virulence determinants adenylate cyclase-hemolysin, filamentous hemagglutinin, and pertactin persisted, the quantity of the two latter factors was diminished, with the levels of pertactin being the most greatly affected. Furthermore, the LPS of B. bronchiseptica LP39 did not react with sera obtained from mice that had been infected with the parental strain, indicating that this defective LPS is immunologically different from the wild-type LPS. In vivo experiments demonstrated that the ability to colonize the respiratory tract is reduced in the mutant, being effectively cleared from lungs within 5 days, whereas the parental strain survived at least for 30 days. In vitro experiments have demonstrated that, although B. bronchiseptica LP39 was impaired for adhesion to human epithelial cells, it is still able to survive within the host cells as efficiently as the parental strain. These results seem to indicate that the deep rough form of B. bronchiseptica LPS cannot represent a dominant phenotype at the first stage of colonization. Since isolates with deep rough LPS phenotype have already been obtained from human B. bronchiseptica chronic infections, the possibility that this phenotype arises as a consequence of selection pressure within the host at a late stage of the infection process is discussed.

Collaboration


Dive into the Antonio Lagares's collaboration.

Top Co-Authors

Avatar

Mariano Pistorio

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walter O. Draghi

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

Mauricio Lozano

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gonzalo Torres Tejerizo

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

Daniela Hozbor

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

María Carla Martini

National University of La Plata

View shared research outputs
Researchain Logo
Decentralizing Knowledge