Daniela Hozbor
National University of La Plata
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniela Hozbor.
Mbio | 2014
Marieke J. Bart; Simon R. Harris; Abdolreza Advani; Yoshichika Arakawa; Daniela Bottero; Valérie Bouchez; Pamela K. Cassiday; Chuen-Sheue Chiang; Tine Dalby; Norman K. Fry; María Emilia Gaillard; Marjolein van Gent; Nicole Guiso; Hans O. Hallander; Eric T. Harvill; Qiushui He; Han G. J. van der Heide; Kees Heuvelman; Daniela Hozbor; Kazunari Kamachi; Gennady I. Karataev; Ruiting Lan; Anna Lutyńska; Ram P. Maharjan; Jussi Mertsola; Tatsuo Miyamura; Sophie Octavia; Andrew Preston; Michael A. Quail; Vitali Sintchenko
ABSTRACT Bordetella pertussis causes pertussis, a respiratory disease that is most severe for infants. Vaccination was introduced in the 1950s, and in recent years, a resurgence of disease was observed worldwide, with significant mortality in infants. Possible causes for this include the switch from whole-cell vaccines (WCVs) to less effective acellular vaccines (ACVs), waning immunity, and pathogen adaptation. Pathogen adaptation is suggested by antigenic divergence between vaccine strains and circulating strains and by the emergence of strains with increased pertussis toxin production. We applied comparative genomics to a worldwide collection of 343 B. pertussis strains isolated between 1920 and 2010. The global phylogeny showed two deep branches; the largest of these contained 98% of all strains, and its expansion correlated temporally with the first descriptions of pertussis outbreaks in Europe in the 16th century. We found little evidence of recent geographical clustering of the strains within this lineage, suggesting rapid strain flow between countries. We observed that changes in genes encoding proteins implicated in protective immunity that are included in ACVs occurred after the introduction of WCVs but before the switch to ACVs. Furthermore, our analyses consistently suggested that virulence-associated genes and genes coding for surface-exposed proteins were involved in adaptation. However, many of the putative adaptive loci identified have a physiological role, and further studies of these loci may reveal less obvious ways in which B. pertussis and the host interact. This work provides insight into ways in which pathogens may adapt to vaccination and suggests ways to improve pertussis vaccines. IMPORTANCE Whooping cough is mainly caused by Bordetella pertussis, and current vaccines are targeted against this organism. Recently, there have been increasing outbreaks of whooping cough, even where vaccine coverage is high. Analysis of the genomes of 343 B. pertussis isolates from around the world over the last 100 years suggests that the organism has emerged within the last 500 years, consistent with historical records. We show that global transmission of new strains is very rapid and that the worldwide population of B. pertussis is evolving in response to vaccine introduction, potentially enabling vaccine escape. Whooping cough is mainly caused by Bordetella pertussis, and current vaccines are targeted against this organism. Recently, there have been increasing outbreaks of whooping cough, even where vaccine coverage is high. Analysis of the genomes of 343 B. pertussis isolates from around the world over the last 100 years suggests that the organism has emerged within the last 500 years, consistent with historical records. We show that global transmission of new strains is very rapid and that the worldwide population of B. pertussis is evolving in response to vaccine introduction, potentially enabling vaccine escape.
Vaccine | 2008
Roy Roberts; Griselda Moreno; Daniela Bottero; María Emilia Gaillard; Matías Fingermann; Augusto Graieb; Martin Rumbo; Daniela Hozbor
In this study the development and evaluation of outer membrane vesicles (OMVs) obtained from Bordetella pertussis as vaccines against pertussis disease is described. SDS-PAGE, immunoblot techniques and gel electrophoresis associated to tandem mass spectrometry were used to describe the composition of the OMVs obtained from B. pertussis Tohama CIP 8132 strain. These techniques revealed the presence of the main well-known pertussis surface immunogens in the OMVs such as pertactin, adenylate cyclase-haemolysin, pertussis toxin, as well as the lipo-oligosaccharide (LOS). A total of 43 proteins were identified by mass spectrometry. Some of them were predicted to have outer membrane or periplasmic location and the others with cytoplasmic or unknown location. The characterized pertussis OMVs were used in murine B. pertussis intranasal (i.n.) challenge model to examine their protective capacity when delivered by different routes. Killed detoxified whole-cell B. pertussis bacteria were used as reference. For intraperitoneal (i.p.) immunization, aluminum hydroxide was used as adjuvant. Since i.n. treatment with OMVs as well as killed whole-cell bacteria enhanced markers of innate immune response such as TNFalpha, IL-6 and CCL20, i.n. immunizations were performed with no adjuvant added. Immunized BALB/c mice were intranasally challenged with sublethal doses of B. pertussis. Significant differences between immunized animals and the PBS treated group were observed (p<0.001). Adequate elimination rates (p<0.005) were observed in mice immunized either with OMV or whole-cell bacteria. Comparable results were obtained with both types of immunization route. In view to their capacity to induce airways innate and protective immunity in the mouse model, OMVs obtained from B pertussis are candidates to be used to protect against pertussis.
Pediatric Infectious Disease Journal | 2015
Tina Q. Tan; Tine Dalby; Kevin Forsyth; Scott A. Halperin; Ulrich Heininger; Daniela Hozbor; Stanley A. Plotkin; Rolando Ulloa-Gutierrez; Carl Heinz Wirsing von König
Pertussis has reemerged as a problem across the world. To better understand the nature of the resurgence, we reviewed recent epidemiologic data and we report disease trends from across the world. Published epidemiologic data from January 2000 to July 2013 were obtained via PubMed searches and open-access websites. Data on vaccine coverage and reported pertussis cases from 2000 through 2012 from the 6 World Health Organization regions were also reviewed. Findings are confounded not only by the lack of systematic and comparable observations in many areas of the world but also by the cyclic nature of pertussis with peaks occurring every 3–5 years. It appears that pertussis incidence has increased in school-age children in North America and western Europe, where acellular pertussis vaccines are used, but an increase has also occurred in some countries that use whole-cell vaccines. Worldwide, pertussis remains a serious health concern, especially for infants, who bear the greatest disease burden. Factors that may contribute to the resurgence include lack of booster immunizations, low vaccine coverage, improved diagnostic methods, and genetic changes in the organism. To better understand the epidemiology of pertussis and optimize disease control, it is important to improve surveillance worldwide, irrespective of pertussis vaccine types and schedules used in each country.
Clinical and Vaccine Immunology | 2007
Daniela Bottero; María Emilia Gaillard; Matías Fingermann; Gabriela Weltman; Julieta Fernández; Federico Sisti; Augusto Graieb; Roy Roberts; Osvaldo Rico; Gustavo Ríos; Mabel Regueira; Norma Binsztein; Daniela Hozbor
ABSTRACT To add new insight to our previous work on the molecular epidemiology of Bordetella pertussis in Argentina, the prn and ptxS1 gene sequences and pulsed-field gel electrophoresis (PFGE) profiles of 57 clinical isolates obtained during two periods, 1969 to 1989 and 1997 to 2006, were analyzed. Non-vaccine-type ptxS1A was detected in isolates obtained since 1969. From 1989 on, a shift of predominance from the vaccine prn1 type to the nonvaccine prn2 type was observed. This was also reflected in a transition of PFGE group IV to group VI. These results show that nonvaccine B. pertussis strains are currently circulating. To analyze whether the observed genomic divergences between vaccine strains and clinical isolates have functional implications, protection assays using the intranasal mouse challenge model were performed. For such experiments, the clinical isolate B. pertussis 106 was selected as representative of circulating bacteria, since it came from the major group of the PFGE dendrogram (PFGE group VI). Groups of mice were immunized either with diphtheria-tetanus-whole-cell pertussis vaccine (ptxS1B prn1) or a vaccine prepared by us containing B. pertussis 106. Immunized mice were then challenged with a B. pertussis vaccine strain (Tohama, harboring ptxS1B and prn1) or the clinical isolate B. pertussis 106 (ptxS1A prn2). An adequate bacterial-elimination rate was observed only when mice were immunized and challenged with the same kind of strain. For further characterization, comparative proteomic profiling of enriched membrane proteins was done using three vaccine strains and the selected B. pertussis 106 clinical isolate. By matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis, a total of 54 proteins were identified. This methodology allowed us to detect differing proteins among the four strains studied and, in particular, to distinguish the three vaccine strains from each other, as well as the vaccine strains from the clinical isolate. The differing proteins observed have cellular roles associated with amino acid and carbohydrate transport and metabolism. Some of them have been proposed as novel vaccine candidate proteins for other pathogens. Overall, the global strategy described here is presented as a good tool for the development of next-generation acellular vaccines.
Vaccine | 2011
Cristian J.A. Asensio; María Emilia Gaillard; Griselda Moreno; Daniela Bottero; E. Zurita; Martin Rumbo; Peter van der Ley; Arno van der Ark; Daniela Hozbor
In an effort to devise a safer and effective pertussis acelullar vaccine, outer membrane vesicles (OMVs) were engineered to decrease their endotoxicity. The pagL gene from Bordetella bronchiseptica, which encodes a lipid A 3-deacylase, was expressed in Bordetella pertussis strain Tohama I. The resulting OMVs, designated OMVs(BpPagL), contain tetra- instead of penta-acylated LOS, in addition to pertussis surface immunogens such as pertactin and pertussis toxin, as the wild type OMVs. The characterized pertussis OMVs(BpPagL) were used in murine B. pertussis intranasal (i.n.) challenge model to examine their protective capacity when delivered by i.n. routes. Immunized BALB/c mice were challenged with sublethal doses of B. pertussis. Significant differences between immunized animals and the PBS treated group were observed (p<0.001). Adequate elimination rates (p<0.005) were observed in mice immunized either with OMVs(BpPagL) and wild type OMVs. All OMV preparations tested were non toxic according to WHO criteria; however, OMVs(BpPagL) displayed almost no weight loss at 3 days post administration, indicating less toxicity when compared with wild type OMVs. Induction of IL6- and IL1-expression in lung after i.n. delivery as well as neutrophil recruitment to airways showed coincident results, with a lower induction of the proinflammatory cytokines and lower recruitment in the case of OMVs(BpPagL) compared to wild type OMVs. Given their lower endotoxic activity and retained protective capacity in the mouse model, OMVs(BpPagL) obtained from B. pertussis seem as interesting candidates to be considered for the development of novel multi-antigen vaccine.
Journal of Infection | 2009
Daniela Hozbor; F. Mooi; D. Flores; G. Weltman; Daniela Bottero; S. Fossati; C. Lara; María Emilia Gaillard; L. Pianciola; E. Zurita; A. Fioriti; D. Archuby; M. Galas; N. Binsztein; M. Regueira; C. Castuma; M. Fingermann; Augusto Graieb
OBJECTIVES Pertussis continues causing significant morbidity and mortality worldwide. Although its epidemiology has been studied in many developed countries, the current pertussis situation in South America is scarcely known. This review summarizes the most important recent data concerning pertussis in a country of South America, Argentina. METHODS CDC criteria were used for pertussis diagnosis. Proportion of pertussis cases by age, immunization status, and immunization coverage rate evaluated at the Argentinean National Pertussis Reference Centers was reported. Bordetella pertussis isolates were characterized and compared with vaccine strains. RESULTS From 2002 to nowadays, a steady increase of pertussis cases was observed. Most of these cases correspond to patients younger than six months old that received less than three doses of vaccine. However, cases in adolescent and adults have also been detected. For this situation, which is not peculiar to Argentina, several explanations have been proposed. Among them, the inability of current vaccines to induce long-lasting immunity is the most widely accepted as a cause of pertussis resurgence. Furthermore, antigenic divergence between local clinical isolates and vaccine strains may have aggravated the effect of waning immunity. CONCLUSIONS Pertussis is an important problem for public health in Argentina. Divergence between vaccine strains and local isolates could contribute to the described pertussis epidemiology.
Journal of Immunology | 2001
Sandra M. M. Hellwig; Daniela Hozbor; Jeanette H. W. Leusen; W. Ludo van der Pol; Jan G. J. van de Winkel
The relevance of specific Abs for the induction of cellular effector functions against Bordetella pertussis was studied. IgG-opsonized B. pertussis was efficiently phagocytosed by human polymorphonuclear leukocytes (PMN). This process was mediated by the PMN IgG receptors, FcγRIIa (CD32) and FcγRIIIb (CD16), working synergistically. Furthermore, these FcγR triggered efficient PMN respiratory burst activity and mediated transfer of B. pertussis to lysosomal compartments, ultimately resulting in reduced bacterial viability. Bacteria opsonized with IgA triggered similar PMN activation via FcαR (CD89). Simultaneous engagement of FcαRI and FcγR by B. pertussis resulted in increased phagocytosis rates, compared with responses induced by either isotype alone. These data provide new insights into host immune mechanisms against B. pertussis and document a crucial role for Ig-FcR interactions in immunity to this human pathogen.
Research in Microbiology | 1999
Daniela Hozbor; Françoise Fouque; Nicole Guiso
Polymerase chain reaction (PCR) assays were developed that enabled not only discriminative detection of three Bordetella species, B. pertussis, B. parapertussis, and B. bronchiseptica (Bspp PCR), but also specific detection of B. bronchiseptica (Bb PCR). An upstream sequence of the flagellin gene was used as a target DNA region. This sequence contained differences in B. pertussis, B. parapertussis, and B. bronchiseptica DNA. These species could then be differentiated using two different sets of primers, Bspp and Bb. When oligonucleotide Bspp primers were used, PCR products were obtained from the three species of Bordetella. A fragment of the expected size (164 bp) was amplified using B. bronchiseptica and B. parapertussis DNA, but a fragment with a distinct molecular weight was amplified with B. pertussis DNA (195 bp). This Bspp PCR was specific and sensitive, but it could not differentiate between B. parapertussis and B. bronchiseptica. When Bb primers were used, a 237-bp PCR product was detected only from B. bronchiseptica DNA. No PCR products were identified after Bb PCR amplification of DNAs either from B. parapertussis isolates or B. pertussis isolates, nor from other respiratory pathogen DNAs tested. This second PCR assay had a sensitivity limit of less than 10 organisms of B. bronchiseptica after detection with a specific probe. The specificity and the sensitivity of the fla PCR assay were evaluated with purified DNA, as was its capacity for detecting the bacteria in human clinical samples and in lungs of infected mice.
Current Microbiology | 1999
Daniela Hozbor; Julieta Fernández; Antonio Lagares; Nicole Guiso; Osvaldo Yantorno
Abstract. The aim of the study reported here was to investigate the production of Bordetella pertussis outer membrane vesicles (OMVs). Numerous vesicles released from cells grown in Stainer-Scholte liquid medium were observed. The formation of similar vesicle-like structures could also be artificially induced by sonication of concentrated bacterial suspensions. Immunoblot analysis showed that OMVs contain adenylate cyclase-hemolysin (AC-Hly), among other polypeptides, as well as the lipopolysaccharide (LPS). Experiments carried out employing purified AC-Hly and OMVs isolated from B. pertussis AC-Hly− showed that AC-Hly is an integral component of the vesicles. OMVs reported here contain several protective immunogens and might be considered a possible basic material for the development of acellular pertussis vaccines.
Journal of Bacteriology | 2001
Antonio Lagares; Daniela Hozbor; Karsten Niehaus; Augusto J.L. Pich Otero; Jens Lorenzen; Walter Arnold; Alfred Pühler
The genetic characterization of a 5.5-kb chromosomal region of Sinorhizobium meliloti 2011 that contains lpsB, a gene required for the normal development of symbiosis with Medicago spp., is presented. The nucleotide sequence of this DNA fragment revealed the presence of six genes: greA and lpsB, transcribed in the forward direction; and lpsE, lpsD, lpsC, and lrp, transcribed in the reverse direction. Except for lpsB, none of the lps genes were relevant for nodulation and nitrogen fixation. Analysis of the transcriptional organization of lpsB showed that greA and lpsB are part of separate transcriptional units, which is in agreement with the finding of a DNA stretch homologous to a “nonnitrogen” promoter consensus sequence between greA and lpsB. The opposite orientation of lpsB with respect to its first downstream coding sequence, lpsE, indicated that the altered LPS and the defective symbiosis of lpsB mutants are both consequences of a primary nonpolar defect in a single gene. Global sequence comparisons revealed that the greA-lpsB and lrp genes of S. meliloti have a genetic organization similar to that of their homologous loci in R. leguminosarum bv. viciae. In particular, high sequence similarity was found between the translation product of lpsB and a core-related biosynthetic mannosyltransferase of R. leguminosarum bv. viciae encoded by the lpcC gene. The functional relationship between these two genes was demonstrated in genetic complementation experiments in which the S. meliloti lpsB gene restored the wild-type LPS phenotype when introduced into lpcC mutants of R. leguminosarum. These results support the view that S. meliloti lpsB also encodes a mannosyltransferase that participates in the biosynthesis of the LPS core. Evidence is provided for the presence of other lpsB-homologous sequences in several members of the family Rhizobiaceae.