Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio Mancuso is active.

Publication


Featured researches published by Antonio Mancuso.


Computer-aided Design | 2003

A genetic algorithm for combined topology and shape optimisations

Francesco Cappello; Antonio Mancuso

A method to find optimal topology and shape of structures is presented. With the first the optimal distribution of an assigned mass is found using an approach based on homogenisation theory, that seeks in which elements of a meshed domain it is present mass; with the second the discontinuous boundaries are smoothed. The problem of the optimal topology search has an ON/OFF nature and has suggested the employment of genetic algorithms. Thus in this paper a genetic algorithm has been developed, which uses as design variables, in the topology optimisation, the relative densities (with respect to effective material density) 0 or 1 of each element of the structure and, in the shape one, the coordinates of the keypoints of changeable boundaries constituted by curves. In both the steps the aim is that to find the variable sets producing the maximum stiffness of the structure, respecting an upper limit on the employed mass. The structural evaluations are carried out with a FEM commercial code, linked to the algorithm. Some applications have been performed and results compared with solutions reported in literature.


Materials | 2015

Thermo-Mechanical Behaviour of Flax-Fibre Reinforced Epoxy Laminates for Industrial Applications

G. Pitarresi; Davide Tumino; Antonio Mancuso

The present work describes the experimental mechanical characterisation of a natural flax fibre reinforced epoxy polymer composite. A commercial plain woven quasi-unidirectional flax fabric with spun-twisted yarns is employed in particular, as well as unidirectional composite panels manufactured with three techniques: hand-lay-up, vacuum bagging and resin infusion. The stiffness and strength behaviours are investigated under both monotonic and low-cycle fatigue loadings. The analysed material has, in particular, shown a typical bilinear behaviour under pure traction, with a knee yield point occurring at a rather low stress value, after which the material tensile stiffness is significantly reduced. In the present work, such a mechanism is investigated by a phenomenological approach, performing periodical loading/unloading cycles, and repeating tensile tests on previously “yielded” samples to assess the evolution of stiffness behaviour. Infrared thermography is also employed to measure the temperature of specimens during monotonic and cyclic loading. In the first case, the thermal signal is monitored to correlate departures from the thermoelastic behaviour with the onset of energy loss mechanisms. In the case of cyclic loading, the thermoelastic signal and the second harmonic component are both determined in order to investigate the extent of elastic behaviour of the material.


WIT Transactions on the Built Environment | 2005

Methodical Redesign Of A Semitrailer

Francesco Cappello; Antonio Mancuso; Vincenzo Nigrelli; Tommaso Ingrassia; Cappello F; Ingrassia T; Mancuso A; Nigrelli

Redesign of a product becomes necessary as a consequence of the evolution of the market requirements, of the man creativity, of the influence of the environmental factors, of the technological development etc. The redesign activity, especially in a context of exasperated economic competition, has become a crucial point in order to try to increase the competitiveness, if not even the life, of a product and/or a company. The redesign must allow the resumption of the increasing process of the performances. This aim requires a methodical and structured approach, which can also cause the modification of the standard conception of the product. In this paper the possibility to reduce the mass of a semitrailer is analysed, modifying its structure. Various solutions have been considered, characterized also by new topology and/or materials, and between all of them the one constituted from a structural floor in composite material has been chosen.


International Journal of Vehicle Design | 2007

A new design approach to the use of composite materials for heavy transport vehicles

Tommaso Ingrassia; Gianluca Alaimo; Francesco Cappello; Antonio Mancuso; Vincenzo Nigrelli

In order to keep or to reach a high level of competitiveness and performance of a product, it is necessary to explore all the possible solutions that allow the best compromise between costs and project requirements. By this point of view the study of alternative designs and/or materials to use, is an important aspect that can identify a new concept or way of thinking about a product. This paper presents how to make use of composite materials in the field of heavy vehicles transportation. A new semitrailer in composite material has been designed, using a methodical redesign approach and an optimisation process. The main innovation in this project is, besides the use of the Glass Fibre Reinforced Plastics (GFRPs), also a new topology of the vehicle frame; the designed semitrailer, in fact, has a monocoque structure.


International Journal of Vehicle Design | 2005

Optimisation of a vehicle shape by CFD code

Calogero D'anca; Antonio Mancuso; Gabriele Virzi' Mariotti

In this paper, fluid dynamics simulations have been executed using a CFD (Computational Fluid Dynamics) commercial code, on a Maserati Biturbo mod. 222 - 1988. At first some surfaces are optimised, choosing the more important ones for the reduction of the resistance, by a manual variation of their geometry, hence a large surface is optimised in an automatic way, by means of an own software, developed in the MatLab environment, returning the optimised surface according to a specific objective function (the resistance in this paper). The aerodynamics resistance results are given under the form of aerodynamics penetration coefficient CD, taking into account the vehicle shape effect, the speed, the fluid properties and the orientation.


Archive | 2017

Refitting of an eco-friendly sailing yacht: numerical prediction and experimental validation

Antonio Mancuso; G. Pitarresi; G. B. Trinca; D. Tumino

A 4.60 m sailing yacht, made with a flax fiber composite and wood, has been refitted with the aim of hull weight reduction and performance improvement during regattas. The first objective was obtained with a lightening of internal hull reinforcements while the second one with a reduction of the maximum beam, in order to minimize the longitudinal moment of inertia. The refitting was first simulated via CAD-FEM interaction to establish the feasibility of the procedure and to verify the structural integrity. The resulting hull was then instrumented with strain gauges and tested under typical rigging and sailing conditions. Results obtained by the numerical modeling and measured from experiments were compared.


LECTURE NOTES IN MECHANICAL ENGINEERING | 2017

Influence of the evolutionary optimization parameters on the optimal topology

Tommaso Ingrassia; Antonio Mancuso; Giorgio Paladino

Topological optimization can be considered as one of the most general types of structural optimization. Between all known topological optimization techniques, the Evolutionary Structural Optimization represents one of the most efficient and easy to implement approaches. Evolutionary topological optimization is based on a heuristic general principle which states that, by gradually removing portions of inefficient material from an assigned domain, the resulting structure will evolve towards an optimal configuration. Usually, the initial continuum domain is divided into finite elements that may or may not be removed according to the chosen efficiency criteria and other parameters like the speed of the evolutionary process, the constraints on displacements and/or stresses, the desired volume reduction, etc. All these variables may influence significantly the final topology. The main goal of this work is to study the influence of both the different optimization parameters and the used efficiency criteria on the optimized topology. In particular, two different evolutionary approaches, based on the von Mises stress and the Strain Energy criteria, have been implemented and analyzed. Both approaches have been deeply investigated by means of a systematic simulation campaign aimed to better understand how the final topology can be influenced by different optimization parameters (e.g. rejection ratio, evolutionary rate, convergence criterion, etc..). A simple case study (a clamped beam) has been developed and simulated and the related results have been compared. Despite the object simplicity, it can be observed that the evolved topology is strictly related to the selected parameters and criteria.


LECTURE NOTES IN MECHANICAL ENGINEERING | 2017

A reverse engineering approach to measure the deformations of a sailing yacht

Francesco Di Paola; Tommaso Ingrassia; Mauro Lo Brutto; Antonio Mancuso

In this work, a multidisciplinary experience, aimed to study the permanent deformations of the hull of a regatta sailing yacht is described. In particular, a procedure to compare two different surfaces of the hull of a small sailing yacht, designed and manufactured at the University of Palermo, has been developed. The first one represents the original CAD model while the second one has been obtained by means of a reverse engineering approach. The reverse engineering process was performed through an automatic close-range photogrammetry survey, that has allowed to obtain very accurate measures of the hull, and a 3D modelling step by the well-known 3D computer graphics software Rhinoceros. The reverse engineering model was checked through two different procedures implemented by the graphical algorithm editor Grasshopper. The first procedure has allowed to compare the photogrammetric measurements with the rebuilt surface, in order to verify if the reverse engineering process has led to reliable results. The second has been implement to measure the deviations between the original CAD model and the rebuilt surface of the hull. This procedure has given the possibility to highlight any permanent deformation of the hull due to errors during the production phase or to excessive loads during its use. The obtained results have demonstrated that the developed procedure is very efficient and able to give detailed information on the deviation values of the two compared surfaces.


International Journal on Interactive Design and Manufacturing (ijidem) | 2017

A multi-technique simultaneous approach for the design of a sailing yacht

Tommaso Ingrassia; Antonio Mancuso; Vincenzo Nigrelli; Davide Tumino


Procedia Engineering | 2015

Mechanical Behaviour of a Green Sandwich Made of Flax Reinforced Polymer Facings and Cork Core

Antonio Mancuso; G. Pitarresi; Davide Tumino

Collaboration


Dive into the Antonio Mancuso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingrassia T

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge