Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Pitarresi is active.

Publication


Featured researches published by G. Pitarresi.


Journal of Strain Analysis for Engineering Design | 2003

A review of the general theory of thermoelastic stress analysis

G. Pitarresi; E. A. Patterson

Thermoelastic stress analysis (TSA) is now a well-known experimental technique providing information on the surface stress field in structures. Many studies have assessed the potential of the technique for a number of applications and some useful and detailed reviews of these investigations are available, focusing mainly on the experimental aspects related to the measurement of the thermoelastic signal. In this work, instead, a complete and detailed insight into the origins of the various forms of the equations describing the thermoelastic effect is given with reference to the concepts of the thermodynamic theory of a continuum. A discussion on the theory leading to the thermoelastic effect law is intended to give a useful overview of the applications and real limitations of TSA.


International Journal of Vehicle Design | 2007

The future use of structural composite materials in the automotive industry

Enrico Mangino; Joe J. Carruthers; G. Pitarresi

The automotive industrys use of structural composite materials began in the 1950s. Since those early days, it has been demonstrated that composites are lightweight, fatigue resistant and easily moulded to shape in other words, a seemingly attractive alternative to metals. However, there has been no widespread switch from metals to composites in the automotive sector. This is because there are a number of technical issues relating to the use of composite materials that still need to be resolved including accurate material characterisation, manufacturing and joining. This paper reports the findings of a recent European initiative that examined the future use of composite materials in the automotive sector. The principal technical challenges that must be overcome in ten key areas relating to composite usage are reviewed. Furthermore, recommendations for future research priorities to overcome these challenges are presented.


Applied Mechanics and Materials | 2005

Investigation on the Influence of the Surface Resin Rich Layer on the Thermoelastic Signal from Different Composite Laminate Lay-Ups

G. Pitarresi; A. Conti; Umberto Galietti

This work presents a set of experimental results based on the measured thermoelastic signal from GRP composite coupons adopting different lay-ups. A comparison is made with the thermoelastic signal predicted by two different analytical models: one based on the classical law of the thermoelastic effect for orthotropic materials, and the other based on a novel theory accounting for the presence of a resin layer on the external surface of the composite structure. The composite coupons were designed such to determine a significant difference in the predictions made by the two theoretical models. Experimental results have shown a far better match with the predictions based on the novel theory accounting for the presence of a surface resin rich layer.


Optical Engineering | 2015

Review of photoelastic image analysis applied to structural birefringent materials: glass and polymers

Michele Scafidi; G. Pitarresi; Andrea Toscano; Giovanni Petrucci; Sabina Alessi; Augusto Ajovalasit

Abstract. Photoelasticity is particularly suitable for the analysis of the stress state in structural materials that are transparent and birefringent. Some techniques of digital photoelasticity (phase shifting and RGB) are applied to the analysis of stress field in two classes of structural materials. The first one consists of tempered glasses, such as those used in the automotive and architectural fields. The second one consists of thermoset polymers, typically used as matrices in fiber reinforced plastic structural composites. The birefringence of such resins is, in particular, exploited to investigate the development of swelling stresses and changes in fracture toughness as induced by water uptake aging.


Materials | 2015

Thermo-Mechanical Behaviour of Flax-Fibre Reinforced Epoxy Laminates for Industrial Applications

G. Pitarresi; Davide Tumino; Antonio Mancuso

The present work describes the experimental mechanical characterisation of a natural flax fibre reinforced epoxy polymer composite. A commercial plain woven quasi-unidirectional flax fabric with spun-twisted yarns is employed in particular, as well as unidirectional composite panels manufactured with three techniques: hand-lay-up, vacuum bagging and resin infusion. The stiffness and strength behaviours are investigated under both monotonic and low-cycle fatigue loadings. The analysed material has, in particular, shown a typical bilinear behaviour under pure traction, with a knee yield point occurring at a rather low stress value, after which the material tensile stiffness is significantly reduced. In the present work, such a mechanism is investigated by a phenomenological approach, performing periodical loading/unloading cycles, and repeating tensile tests on previously “yielded” samples to assess the evolution of stiffness behaviour. Infrared thermography is also employed to measure the temperature of specimens during monotonic and cyclic loading. In the first case, the thermal signal is monitored to correlate departures from the thermoelastic behaviour with the onset of energy loss mechanisms. In the case of cyclic loading, the thermoelastic signal and the second harmonic component are both determined in order to investigate the extent of elastic behaviour of the material.


Journal of Sandwich Structures and Materials | 2011

Indentation of rigidly supported sandwich beams with foam cores exhibiting non-linear compressive behaviour

G. Pitarresi; João Amorim

A generalized analytical approach to investigate the indentation of sandwich beams under concentrated loads is presented, based on the Winkler foundation theory. A segment-wise model is implemented to the case of fully backed sandwich beams with polymeric foam cores exhibiting generic non-linear compressive behaviours. Closed-form analytical solutions of the indentation curve are obtained for simplified foam compression behaviours: elastic-perfectly-plastic, bilinear and bilinear-perfectly-plastic. Analytical predictions are compared with experimental data from sandwiches employing foam cores with peculiar non-linear behaviours. The proposed models are found to give a better match of the experimental data than the classic elastic-perfectly-plastic model.


Fracture and Structural Integrity | 2014

Photoelastic stress analysis assisted evaluation of fracture toughness in hydrothermally aged epoxies

G. Pitarresi; Andrea Toscano; Michele Scafidi; M. Di Filippo; Sabina Alessi; G. Spadaro

The present work has investigated the fracture toughness of a model DGEBA epoxy system subject to Hidro-Thermal aging. A Photoelastic Stress Analysis technique has been implemented, showing the evolution of stresses arising throughout the water uptake process due to the non-uniform swelling of the material. Gravimetric and Dynamic Mechanical Thermal Analyses have further complemented the characterization, showing the onset of plasticization effects with aging. The correlation of all previous characterizations has allowed to conclude that an increase of KIC fracture toughness is obtained at the fully saturated condition. In particular Photoelasticity has also revealed the onset of relevant swelling induced stresses during the first stages of water absorption, leading to an increase of fracture toughness due to compressive stresses settling near the crack tip. A stress free condition is instead reestablished at the later stages of absorption, suggesting that the increased toughness of the saturated material is an effect of the modifications induced by aging on the polymer structure.


Journal of Strain Analysis for Engineering Design | 2008

Thermoelastic stress analysis by means of an infrared scanner and a two-dimensional fast Fourier transform-based lock-in technique

G. Pitarresi; Leonardo D'Acquisto; Antonino M. Siddiolo

An infrared thermographic experimental set-up has been proposed and evaluated towards the capability to measure thermoelastic-effect-induced temperature changes. A standard infrared thermocamera with a nominal noise-equivalent temperature difference (NETD) resolution of 0.12 K has been employed to measure the temperature from unidirectional glass-reinforced plastic tensile coupons under cyclic sinusoidal loads. The raster scanning mode of the camera single detector produces a time delay in acquiring the signal from two succeeding pixels on the same row, and from consecutive scanned rows. By exploiting the acquired dwell times, it was possible to produce a periodic pattern on the thermal maps, caused by and correlated with the thermoelastic-effect-induced temperature changes. The acquired raw data have then been post-processed with a lock-in algorithm implemented in MATLAB® and based on a two-dimensional fast Fourier transform analysis. The filtered thermoelastic component from the lock-in analysis showed good linearity with the load applied, up to values of the temperature change one order of magnitude lower than the NETD resolution limits of the thermocamera. In the light of this the present experimental set-up and processing methodology can be proposed as a potential low-cost tool for thermoelastic stress analysis investigations.


6TH INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) AND COMPOSITES | 2012

Mode I fracture toughness behavior of hydro-thermally aged carbon fibre reinforced DGEBA-HHPA-PES systems

Sabina Alessi; G. Pitarresi; G. Spadaro; Davide Tumino

In this work the Mode I fracture toughness behavior of unidirectional CFRP laminates is investigated by means of Double Cantilever Beam (DCB) tests. The composite samples were manufactured by thermal curing after impregnation of a Carbon fabric with a DGEBA epoxy and anhydride HHPA curing agent. One resin batch was also mixed with a PES thermoplastic monomer to enhance the matrix toughness. Two lots of samples, toughened and untoughened, were then left to soak in hot water to achieve various degrees of aging. The influence of matrix toughening and hydrothermal aging on the delamination behavior of the composite have then been assessed and correlated with characterization data from Dynamic Mechanical Thermal Analysis (DMTA) and Scanning Electron Microscopy (SEM).


Frattura ed Integrità Strutturale | 2018

A numerical and experimental study through laser thermography for defect detection on metal additive manufactured parts

N. Montinaro; D. Cerniglia; G. Pitarresi

Additive manufacturing has been recently employed in industrial sectors with the fundamental requirement for zero defect parts. Technological developments in additive manufacturing notwithstanding, there continues to be a scarcity of non-destructive inspection techniques to be exploited during the manufacturing process itself, thus limiting industrial advancements and extensive applications. Therefore, being able to integrate the defect inspection phase within the additive manufacturing process would open the way to enabling corrective actions on the component in itinere, that is, before reaching the final product. For this reason, new methods of in-process monitoring are gaining more and more attention nowadays. In this work, a remote laser thermographic methodology is employed as a mean to detect micrometric defects in additive manufactured samples. Beforehand, a preliminary Finite Element Analysis was carried out in order to optimize the sensitivity of the technique to the micrometric defects. Our results indicate that the technique is proved to be quite successful in detecting flaws, with the added plus of being suitable for integration in the additive manufacturing equipment, thus allowing a continuous in-line inspection.

Collaboration


Dive into the G. Pitarresi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge