Antonio Samarelli
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonio Samarelli.
IEEE Photonics Journal | 2010
Andrea Melloni; Antonio Canciamilla; C. Ferrari; Francesco Morichetti; Liam O'Faolain; Thomas F. Krauss; R.M. De La Rue; Antonio Samarelli; Marc Sorel
In this paper, we report a direct comparison between coupled resonator optical waveguides (CROWs) and photonic crystal waveguides (PhCWs), which have both been exploited as tunable delay lines. The two structures were fabricated on the same silicon-on-insulator (SOI) technological platform, with the same fabrication facilities and evaluated under the same signal bit-rate conditions. We compare the frequency- and time-domain response of the two structures; the physical mechanism underlying the tuning of the delay; the main limits induced by loss, dispersion, and structural disorder; and the impact of CROW and PhCW tunable delay lines on the transmission of data stream intensity and phase modulated up to 100 Gb/s. The main result of this study is that, in the considered domain of applications, CROWs and PhCWs behave much more similarly than one would expect. At data rates around 100 Gb/s, CROWs and PhCWs can be placed in competition. Lower data rates, where longer absolute delays are required and propagation loss becomes a critical issue, are the preferred domain of CROWs fabricated with large ring resonators, while at data rates in the terabit range, PhCWs remain the leading technology.
Nature Communications | 2011
Francesco Morichetti; Antonio Canciamilla; C. Ferrari; Antonio Samarelli; Marc Sorel; Andrea Melloni
Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s−1
Nano Letters | 2015
Leonetta Baldassarre; Emilie Sakat; Jacopo Frigerio; Antonio Samarelli; Kevin Gallacher; Eugenio Calandrini; Giovanni Isella; Douglas J. Paul; M. Ortolani; Paolo Biagioni
Midinfrared plasmonic sensing allows the direct targeting of unique vibrational fingerprints of molecules. While gold has been used almost exclusively so far, recent research has focused on semiconductors with the potential to revolutionize plasmonic devices. We fabricate antennas out of heavily doped Ge films epitaxially grown on Si wafers and demonstrate up to 2 orders of magnitude signal enhancement for the molecules located in the antenna hot spots compared to those located on a bare silicon substrate. Our results set a new path toward integration of plasmonic sensors with the ubiquitous CMOS platform.
Journal of Optics | 2010
Antonio Canciamilla; Matteo Torregiani; C. Ferrari; Francesco Morichetti; R.M. De La Rue; Antonio Samarelli; Marc Sorel; Andrea Melloni
Coupled-ring resonator-based slow light structures are reported and discussed. By combining the advantages of high index contrast silicon-on-insulator technology with an efficient thermo-optical activation, they provide an on-chip solution with a bandwidth of up to 100 GHz and a slowdown factor of up to 16, as well as a continuous reconfiguration scheme and a fine tunability. The performance of these devices is investigated in detail for both static and dynamic operation, in order to evaluate their potential in optical signal processing applications at high bit rate. The main impairments imposed by fabrication imperfections are also discussed in relation to the slowdown factor. In particular, the analysis of the impact of backscatter, disorder and two-photon absorption on the device transfer function reveals the ultimate limits of these structures and provides valuable design rules for their optimization.
Applied Physics Letters | 2010
Francesco Morichetti; Antonio Canciamilla; M. Martinelli; Antonio Samarelli; R.M. De La Rue; Marc Sorel; Andrea Melloni
The effects of backscattering induced by waveguide sidewall roughness in integrated ring resonators (RRs) are experimentally observed. We demonstrate that coherent backscattering, originated by multiple round trips in the RR, increases with the square of the effective group index of the cavity and can dramatically affect the behavior of integrated RRs even at moderate quality factors of 104. From our results backscattering emerges as one of the most severe limiting factors on the performance of RRs fabricated with state-of-the-art silicon-on-insulator nanowaveguides.
Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena | 2012
Muhammad M. Mirza; H. Zhou; Philippe Velha; Xu Li; Kevin E. Docherty; Antonio Samarelli; G. Ternent; Douglas J. Paul
The development of nanofabrication techniques for creating high aspect ratio (∼50:1) sub-10 nm silicon nanowires (SiNWs) with smooth, uniform, and straight vertical sidewalls using an inductively coupled plasma (ICP) etching process at 20 °C is reported. In particular, to improve the quality and flexibility of the pattern transfer process for high aspect ratio SiNWs, hydrogen silsesquioxane, a high-resolution, inorganic, negative-tone resist for electron-beam lithography has been used as both the resist for defining sub-10 nm patterns and the hard mask for etching the underneath silicon material. The effects of SF6/C4F8 gas flow rates, chamber pressure, platen power and ICP power on the etch rate, selectivity, and sidewall profile are investigated. To minimize plasma-induced sidewall damage, moderate plasma excitation power (ICP power of 600 W) and low ion energy (platen power of 6–12 W) were used. Using the optimized etch process at room temperature (20 °C), the authors have successfully fabricated sub-1...
Nature | 2016
Richard P. Middlemiss; Antonio Samarelli; Douglas J. Paul; J. Hough; S. Rowan; G. Hammond
The ability to measure tiny variations in the local gravitational acceleration allows, besides other applications, the detection of hidden hydrocarbon reserves, magma build-up before volcanic eruptions, and subterranean tunnels. Several technologies are available that achieve the sensitivities required for such applications (tens of microgal per hertz1/2): free-fall gravimeters, spring-based gravimeters, superconducting gravimeters, and atom interferometers. All of these devices can observe the Earth tides: the elastic deformation of the Earth’s crust as a result of tidal forces. This is a universally predictable gravitational signal that requires both high sensitivity and high stability over timescales of several days to measure. All present gravimeters, however, have limitations of high cost (more than 100,000 US dollars) and high mass (more than 8 kilograms). Here we present a microelectromechanical system (MEMS) device with a sensitivity of 40 microgal per hertz1/2 only a few cubic centimetres in size. We use it to measure the Earth tides, revealing the long-term stability of our instrument compared to any other MEMS device. MEMS accelerometers—found in most smart phones—can be mass-produced remarkably cheaply, but none are stable enough to be called a gravimeter. Our device has thus made the transition from accelerometer to gravimeter. The small size and low cost of this MEMS gravimeter suggests many applications in gravity mapping. For example, it could be mounted on a drone instead of low-flying aircraft for distributed land surveying and exploration, deployed to monitor volcanoes, or built into multi-pixel density-contrast imaging arrays.
Journal of Applied Physics | 2013
Antonio Samarelli; L. Ferre Llin; Stefano Cecchi; Jacopo Frigerio; Tanja Etzelstorfer; E. Müller; Yuan Zhang; J.R. Watling; D. Chrastina; Giovanni Isella; J. Stangl; J. P. Hague; J. M. R. Weaver; Phillip S. Dobson; Douglas J. Paul
The thermoelectric and physical properties of superlattices consisting of modulation doped Ge quantum wells inside Si1− y Ge y barriers are presented, which demonstrate enhancements in the thermoelectric figure of merit, ZT, and power factor at room temperature over bulk Ge, Si1− y Ge y , and Si/Ge superlattice materials. Mobility spectrum analysis along with low temperature measurements indicate that the high power factors are dominated by the high electrical conductivity from the modulation doping. Comparison of the results with modelling using the Boltzmann transport equation with scattering parameters obtained from Monte Carlo techniques indicates that a high threading dislocation density is also limiting the performance. The analysis suggests routes to higher thermoelectric performance at room temperature from Si-based materials that can be fabricated using micro- and nano-fabrication techniques.
Applied Physics Letters | 2013
L. Ferre Llin; Antonio Samarelli; Stefano Cecchi; Tanja Etzelstorfer; E. Müller Gubler; D. Chrastina; G. Isella; J. Stangl; J. M. R. Weaver; Phillip S. Dobson; Douglas J. Paul
The electrical conductivity, Seebeck coefficients, and thermal conductivities of a range of p-type Ge/Si0.5 Ge 0.5 superlattices designed for thermoelectric generation and grown by low energy plasma enhanced chemical vapor deposition have been measured using a range of microfabricated test structures. For samples with barriers around 0.5 nm in thickness, the measured Seebeck coefficients were comparable to bulk p-SiGe at similar doping levels suggesting the holes see the material as a random bulk alloy rather than a superlattice. The Seebeck coefficients for Ge quantum wells of 2.85 ± 0.85 nm increased up to 533 ± 25 μV/K as the doping was reduced. The thermal conductivities are between 4.5 to 6.0 Wm−1K−1 which are lower than comparably doped bulk Si0.3 Ge 0.7 but higher than undoped Si/Ge superlattices. The highest measured figure of merit ZT was 0.080 ± 0.011 obtained for the widest quantum well studied. Analysis suggests that interface roughness is presently limiting the performance and a reduction in the strain between the quantum wells and barriers has the potential to improve the thermoelectric performance.
Journal of Materials Science | 2013
Stefano Cecchi; Tanja Etzelstorfer; E. Müller; Antonio Samarelli; Lourdes Ferre Llin; D. Chrastina; Giovanni Isella; J. Stangl; Douglas J. Paul
Ge-rich multiple quantum well heterostructures have been investigated as engineered material for efficient thermoelectric generators monolithically integrated on silicon substrates. Thick Ge/SiGe multilayers on Si substrates designed for lateral thermoelectric devices have been grown and characterized in which electrical and thermal conduction occur parallel to the heterostructure interfaces. In this study, an overview of the investigated structures is presented together with results from X-ray scattering and transmission electron microscopy experiments. These analyses confirm the high quality of the material and the uniformity of the structure over the whole deposited thickness. Important parameters in terms of the optimization of the material quality which could affect thermoelectric properties, such as the interfaces roughness and the threading dislocation density, have also been evaluated. Preliminary electrical and Seebeck coefficient measurements indicate the viability of this material for the realization of thermoelectric devices.