Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin Gallacher is active.

Publication


Featured researches published by Kevin Gallacher.


Nano Letters | 2015

Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates

Leonetta Baldassarre; Emilie Sakat; Jacopo Frigerio; Antonio Samarelli; Kevin Gallacher; Eugenio Calandrini; Giovanni Isella; Douglas J. Paul; M. Ortolani; Paolo Biagioni

Midinfrared plasmonic sensing allows the direct targeting of unique vibrational fingerprints of molecules. While gold has been used almost exclusively so far, recent research has focused on semiconductors with the potential to revolutionize plasmonic devices. We fabricate antennas out of heavily doped Ge films epitaxially grown on Si wafers and demonstrate up to 2 orders of magnitude signal enhancement for the molecules located in the antenna hot spots compared to those located on a bare silicon substrate. Our results set a new path toward integration of plasmonic sensors with the ubiquitous CMOS platform.


Applied Physics Letters | 2012

Ohmic contacts to n-type germanium with low specific contact resistivity

Kevin Gallacher; Philippe Velha; Douglas J. Paul; Ian MacLaren; Maksym Myronov; D. R. Leadley

A low temperature nickel process has been developed that produces Ohmic contacts to n-type germanium with specific contact resistivities down to (2.3 ± 1.8) × 10−7 Ω-cm2 for anneal temperatures of 340 °C. The low contact resistivity is attributed to the low resistivity NiGe phase which was identified using electron diffraction in a transmission electron microscope. Electrical results indicate that the linear Ohmic behaviour of the contact is attributed to quantum mechanical tunnelling through the Schottky barrier formed between the NiGe alloy and the heavily doped n-Ge.


Physical Review B | 2016

Tunability of the dielectric function of heavily doped germanium thin films for mid-infrared plasmonics

Jacopo Frigerio; Andrea Ballabio; Giovanni Isella; Emilie Sakat; Giovanni Pellegrini; Paolo Biagioni; Monica Bollani; E. Napolitani; Costanza Manganelli; Michele Virgilio; Alexander Grupp; Marco P. Fischer; Daniele Brida; Kevin Gallacher; Douglas J. Paul; L. Baldassarre; P. Calvani; Valeria Giliberti; A. Nucara; M. Ortolani

Heavily-doped semiconductor films are very promising for application in mid-infrared plasmonic devices because the real part of their dielectric function is negative and broadly tunable in this wavelength range. In this work we investigate heavily n-type doped germanium epilayers grown on different substrates, in-situ doped in the 10 to 10 cm range, by infrared spectroscopy, first principle calculations, pump-probe spectroscopy and dc transport measurements to determine the relation between plasma edge and carrier density and to quantify mid-infrared plasmon losses. We demonstrate that the unscreened plasma frequency can be tuned in the 400 4800 cm range and that the average electron scattering rate, dominated by scattering with optical phonons and charged impurities, increases almost linearly with frequency. We also found weak dependence of losses and tunability on the crystal defect density, on the inactivated dopant density and on the temperature down to 10 K. In films where the plasma was optically activated by pumping in the near-infrared, we found weak but significant dependence of relaxation times on the static doping level of the film. Our results suggest that plasmon decay times in the several-picosecond range can be obtained in ntype germanium thin films grown on silicon substrates hence allowing for underdamped mid-infrared plasma oscillations at room temperature.


IEEE Transactions on Electron Devices | 2013

Ge-on-Si Single-Photon Avalanche Diode Detectors: Design, Modeling, Fabrication, and Characterization at Wavelengths 1310 and 1550 nm

Ryan E. Warburton; Giuseppe Intermite; Maksym Myronov; Phil Allred; D. R. Leadley; Kevin Gallacher; Douglas J. Paul; Neil J. Pilgrim; L. Lever; Z. Ikonić; R. W. Kelsall; Edgar Huante-Ceron; Andrew P. Knights; Gerald S. Buller

The design, modeling, fabrication, and characterization of single-photon avalanche diode detectors with an epitaxial Ge absorption region grown directly on Si are presented. At 100 K, a single-photon detection efficiency of 4% at 1310 nm wavelength was measured with a dark count rate of ~ 6 megacounts/s, resulting in the lowest reported noise-equivalent power for a Ge-on-Si single-photon avalanche diode detector (1×10-14 WHz-1/2). The first report of 1550 nm wavelength detection efficiency measurements with such a device is presented. A jitter of 300 ps was measured, and preliminary tests on after-pulsing showed only a small increase (a factor of 2) in the normalized dark count rate when the gating frequency was increased from 1 kHz to 1 MHz. These initial results suggest that optimized devices integrated on Si substrates could potentially provide performance comparable to or better than that of many commercially available discrete technologies.


Optics Express | 2015

Extending the emission wavelength of Ge nanopillars to 2.25 μm using silicon nitride stressors.

Ross W. Millar; Kevin Gallacher; Antonio Samarelli; Jacopo Frigerio; D. Chrastina; Giovanni Isella; T. Dieing; Douglas J. Paul

The room temperature photoluminescence from Ge nanopillars has been extended from 1.6 μm to above 2.25 μm wavelength through the application of tensile stress from silicon nitride stressors deposited by inductively-coupled-plasma plasma-enhanced chemical-vapour-deposition. Photoluminescence measurements demonstrate biaxial equivalent tensile strains of up to ∼ 1.35% in square topped nanopillars with side lengths of 200 nm. Biaxial equivalent strains of 0.9% are observed in 300 nm square top pillars, confirmed by confocal Raman spectroscopy. Finite element modelling demonstrates that an all-around stressor layer is preferable to a top only stressor, as it increases the hydrostatic component of the strain, leading to an increased shift in the band-edge and improved uniformity over top-surface only stressors layers.


Optics Express | 2014

Ge/SiGe quantum confined Stark effect electro-absorption modulation with low voltage swing at λ = 1550 nm

D. C. S. Dumas; Kevin Gallacher; Stephen Rhead; Maksym Myronov; D. R. Leadley; Douglas J. Paul

Low-voltage swing (≤1.0 V) high-contrast ratio (6 dB) electro-absorption modulation covering 1460 to 1560 nm wavelength has been demonstrated using Ge/SiGe quantum confined Stark effect (QCSE) diodes grown on a silicon substrate. The heterolayers for the devices were designed using an 8-band k.p Poisson-Schrödinger solver which demonstrated excellent agreement with the experimental results. Modelling and experimental results demonstrate that by changing the quantum well width of the device, low power Ge/SiGe QCSE modulators can be designed to cover the S- and C-telecommunications bands.


Applied Physics Letters | 2012

1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates

Kevin Gallacher; Philippe Velha; Douglas J. Paul; Stefano Cecchi; Jacopo Frigerio; D. Chrastina; Giovanni Isella

Electroluminescence from strained n-Ge quantum well light emitting diodes grown on a silicon substrate are demonstrated at room temperature. Electroluminescence characterisation demonstrates two peaks around 1.55 μm and 1.8 μm, which correspond to recombination between the direct and indirect transitions, respectively. The emission wavelength can be tuned by around 4% through changing the current density through the device. The devices have potential applications in the fields of optical interconnects, gas sensing, and healthcare.


Journal of Nanophotonics | 2015

Group-IV midinfrared plasmonics

Paolo Biagioni; Jacopo Frigerio; Antonio Samarelli; Kevin Gallacher; Leonetta Baldassarre; Emilie Sakat; Eugenio Calandrini; Ross W. Millar; Valeria Giliberti; Giovanni Isella; Douglas J. Paul; M. Ortolani

Abstract. The use of heavily doped semiconductors to achieve plasma frequencies in the mid-IR has been recently proposed as a promising way to obtain high-quality and tunable plasmonic materials. We introduce a plasmonic platform based on epitaxial n-type Ge grown on standard Si wafers by means of low-energy plasma-enhanced chemical vapor deposition. Due to the large carrier concentration achieved with P dopants and to the compatibility with the existing CMOS technology, SiGe plasmonics hold promises for mid-IR applications in optoelectronics, IR detection, sensing, and light harvesting. As a representative example, we show simulations of mid-IR plasmonic waveguides based on the experimentally retrieved dielectric constants of the grown materials.


Applied Physics Letters | 2016

Mid-infrared intersubband absorption from p-Ge quantum wells grown on Si substrates

Kevin Gallacher; Andrea Ballabio; Ross W. Millar; Jacopo Frigerio; A. Bashir; Ian MacLaren; Giovanni Isella; M. Ortolani; Douglas J. Paul

Mid-infrared intersubband absorption from p-Ge quantum wells with Si0.5Ge0.5 barriers grown on a Si substrate is demonstrated from 6 to 9 μm wavelength at room temperature and can be tuned by adjusting the quantum well thickness. Fourier transform infra-red transmission and photoluminescence measurements demonstrate clear absorption peaks corresponding to intersubband transitions among confined hole states. The work indicates an approach that will allow quantum well intersubband photodetectors to be realized on Si substrates in the important atmospheric transmission window of 8–13 μm.


Applied Physics Letters | 2016

Disentangling nonradiative recombination processes in Ge micro-crystals on Si substrates

Fabio Pezzoli; A Giorgioni; Kevin Gallacher; Fabio Isa; Paolo Biagioni; Ross W. Millar; E. Gatti; E. Grilli; E. Bonera; Giovanni Isella; Douglas J. Paul; Leo Miglio

We address nonradiative recombination pathways by leveraging surface passivation and dislocation management in μm-scale arrays of Ge crystals grown on deeply patterned Si substrates. The time decay photoluminescence (PL) at cryogenic temperatures discloses carrier lifetimes approaching 45 ns in band-gap engineered Ge micro-crystals. This investigation provides compelling information about the competitive interplay between the radiative band-edge transitions and the trapping of carriers by dislocations and free surfaces. Furthermore, an in-depth analysis of the temperature dependence of the PL, combined with capacitance data and finite difference time domain modeling, demonstrates the effectiveness of GeO2 in passivating the surface of Ge and thus in enhancing the room temperature PL emission.

Collaboration


Dive into the Kevin Gallacher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Ortolani

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valeria Giliberti

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Baldassarre

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Leonetta Baldassarre

Istituto Italiano di Tecnologia

View shared research outputs
Researchain Logo
Decentralizing Knowledge