Antonio Servadio
Baylor College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonio Servadio.
Cell | 1995
Eric N. Burright; H. Brent Clark; Antonio Servadio; Toni Matilla; Rodney M. Feddersen; Wael S. Yunis; Lisa A. Duvick; Huda Y. Zoghbi; Harry T. Orr
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant inherited disorder characterized by degeneration of cerebellar Purkinje cells, spinocerebellar tracts, and selective brainstem neurons owing to the expansion of an unstable CAG trinucleotide repeat. To gain insight into the pathogenesis of the SCA1 mutation and the intergenerational stability of trinucleotide repeats in mice, we have generated transgenic mice expressing the human SCA1 gene with either a normal or an expanded CAG tract. Both transgenes were stable in parent to offspring transmissions. While all six transgenic lines expressing the unexpanded human SCA1 allele had normal Purkinje cells, transgenic animals from five of six lines with the expanded SCA1 allele developed ataxia and Purkinje cell degeneration. These data indicate that expanded CAG repeats expressed in Purkinje cells are sufficient to produce degeneration and ataxia and demonstrate that a mouse model can be established for neurodegeneration caused by CAG repeat expansions.
Nature | 1997
Pamela J. Skinner; Beena T. Koshy; Christopher J. Cummings; Ivan A. Klement; Kara Helin; Antonio Servadio; Huda Y. Zoghbi; Harry T. Orr
Spinocerebellar ataxia type 1 (SCA1) is one of several neurodegenerative disorders caused by an expansion of a polyglutamine tract. It is characterized by ataxia, progressive motor deterioration, and loss of cerebellar Purkinje cells. To understand the pathogenesis of SCA1, we examined the subcellular localization of wild-type human ataxin-1 (the protein encoded by the SCA1 gene) and mutant ataxin-1 in the Purkinje cells of transgenic mice. We found that ataxin-1 localizes to the nuclei of cerebellar Purkinje cells. Normal ataxin-1 localizes to several nuclear structures ∼0.5 µm across, whereas the expanded ataxin-1 localizes to a single ∼2-µm structure, before the onset of ataxia. Mutant ataxin-1 localizes to a single nuclear structure in affected neurons of SCA1 patients. Similarly, COS-1 cells transfected with wild-type or mutant ataxin-1 show a similar pattern of nuclear localization; with expanded ataxin-1 occurring in larger structures that are fewer in number than those of normal ataxin-1. Colocalization studies show that mutant ataxin-1 causes a specific redistribution of the nuclear matrix-associated domain containing promyelocytic leukaemia protein. Nuclear matrix preparations demonstrate that ataxin-1 associates with the nuclear matrix in Purkinje and COS cells. We therefore propose that a critical aspect of SCA1 pathogenesis involves the disruption of a nuclear matrix-associated domain.
Nature Genetics | 1994
Sandro Banfi; Antonio Servadio; Ming yi Chung; Thomas J. Kwiatkowski; Alanna E. McCall; Lisa A. Duvick; Ying Shen; Elizabeth J. Roth; Harry T. Orr; Huda Y. Zoghbi
Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disorder caused by expansion of a CAG trinucleotide repeat. In this study, we describe the identification and characterization of the gene harbouring this repeat. The SCA1 transcript is 10,660 bases and is transcribed from both the wild type and SCA1 alleles. The CAG repeat, coding for a polyglutamine tract, lies within the coding region. The gene spans 450 kb of genomic DNA and is organized in nine exons. The first seven fall in the 5′ untranslated region and the last two contain the coding region, and a 7,277 basepairs 3′ untranslated region. The first four non–coding exons undergo alternative splicing in several tissues. These features suggest that the transcriptional and translational regulation of ataxin–1, the SCA1 encoded protein, may be complex.
The Journal of Neuroscience | 2008
Silke Nuber; Elisabeth Petrasch-Parwez; Beate Winner; Jürgen Winkler; Stephan von Hörsten; Thorsten Schmidt; Jana Boy; Melanie Kuhn; Huu P. Nguyen; Peter Teismann; Jörg B. Schulz; Manuela Neumann; Bernd J. Pichler; Gerald Reischl; Carsten Holzmann; Ina Schmitt; Antje Bornemann; Wilfried Kuhn; Frank Zimmermann; Antonio Servadio; Olaf Riess
α-Synuclein (α-syn) has been implicated in the pathogenesis of many neurodegenerative disorders, including Parkinsons disease. These disorders are characterized by various neurological and psychiatric symptoms based on progressive neuropathological alterations. Whether the neurodegenerative process might be halted or even reversed is presently unknown. Therefore, conditional mouse models are powerful tools to analyze the relationship between transgene expression and progression of the disease. To explore whether α-syn solely originates and further incites these alterations, we generated conditional mouse models by using the tet-regulatable system. Mice expressing high levels of human wild-type α-syn in midbrain and forebrain regions developed nigral and hippocampal neuropathology, including reduced neurogenesis and neurodegeneration in absence of fibrillary inclusions, leading to cognitive impairment and progressive motor decline. Turning off transgene expression in symptomatic mice halted progression but did not reverse the symptoms. Thus, our data suggest that approaches targeting α-syn-induced pathological pathways might be of benefit rather in early disease stages. Furthermore, α-syn-associated cytotoxicity is independent of filamentous inclusion body formation in our conditional mouse model.
The Journal of Neuroscience | 2004
Daniela Canzoniere; Stefano Farioli-Vecchioli; Filippo Conti; Maria Teresa Ciotti; Ada Maria Tata; Gabriella Augusti-Tocco; Elisabetta Mattei; Madepalli K. Lakshmana; Valery Krizhanovsky; Steven A. Reeves; Roberto Giovannoni; Francesca Castano; Antonio Servadio; Nissim Ben-Arie; Felice Tirone
Growing evidence indicates that cell cycle arrest and neurogenesis are highly coordinated and interactive processes, governed by cell cycle genes and neural transcription factors. The gene PC3 (Tis21/BTG2) is expressed in the neuroblast throughout the neural tube and inhibits cell cycle progression at the G1 checkpoint by repressing cyclin D1 transcription. We generated inducible mouse models in which the expression of PC3 was upregulated in neuronal precursors of the neural tube and of the cerebellum. These mice exhibited a marked increase in the production of postmitotic neurons and impairment of cerebellar development. Cerebellar granule precursors of PC3 transgenic mice displayed inhibition of cyclin D1 expression and a strong increase in the expression of Math1, a transcription factor required for their differentiation. Furthermore, PC3, encoded by a recombinant adenovirus, also induced Math1 in postmitotic granule cells in vitro and stimulated the Math1 promoter activity. In contrast, PC3 expression was unaffected in the cerebellar primordium of Math1 null mice, suggesting that PC3 acts upstream to Math1. As a whole, our data suggest that cell cycle exit of cerebellar granule cell precursors and the onset of cerebellar neurogenesis are coordinated by PC3 through transcriptional control of cyclin D1 and Math1, respectively.
Human Molecular Genetics | 2009
Jana Boy; Thorsten Schmidt; Hartwig Wolburg; Andreas F. Mack; Silke Nuber; Martin Böttcher; Ina Schmitt; Carsten Holzmann; Frank Zimmermann; Antonio Servadio; Olaf Riess
Spinocerebellar ataxia type 3 (SCA3) is caused by the expansion of a CAG repeat tract that affects the MJD1 gene which encodes the ataxin-3 protein. In order to analyze whether symptoms caused by ataxin-3 with an expanded repeat are reversible in vivo, we generated a conditional mouse model of SCA3 using the Tet-Off system. We used a full-length human ataxin-3 cDNA with 77 repeats in order to generate the responder mouse line. After crossbreeding with a PrP promoter mouse line, double transgenic mice developed a progressive neurological phenotype characterized by neuronal dysfunction in the cerebellum, reduced anxiety, hyperactivity, impaired Rotarod performance and lower body weight gain. When ataxin-3 expression was turned off in symptomatic mice in an early disease state, the transgenic mice were indistinguishable from negative controls after 5 months of treatment. These results show that reducing the production of pathogenic ataxin-3 indeed may be a promising approach to treat SCA3, provided that such treatment is applied before irreversible damage has taken place and that it is continued for a sufficiently long time.
Nature | 1998
Pamela J. Skinner; Beena T. Koshy; Christopher J. Cummings; Ivan A. Klement; K. Helin; Antonio Servadio; Huda Y. Zoghbi; Harry T. Orr
This corrects the article DOI: 10.1038/40153
Nature Genetics | 1993
Harry T. Orr; Ming yi Chung; Sandro Banfi; Thomas J. Kwiatkowski; Antonio Servadio; Arthur L. Beaudet; Alanna E. McCall; Lisa A. Duvick; Laura P.W. Ranum; Huda Y. Zoghbi
Nature Genetics | 1993
Ming-Yi Chung; Laura P.W. Ranum; Lisa A. Duvick; Antonio Servadio; Huda Y. Zoghbi; Harry T. Orr
Nature Genetics | 1995
Antonio Servadio; Beena T. Koshy; Dawna L. Armstrong; Barbara Antalffy; Harry T. Orr; Huda Y. Zoghbi