Huda Y. Zoghbi
Baylor College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huda Y. Zoghbi.
Nature Genetics | 1999
Ruthie E. Amir; Ignatia B. Van den Veyver; Mimi Wan; Charles Q. Tran; Uta Francke; Huda Y. Zoghbi
Rett syndrome (RTT, MIM 312750) is a progressive neurodevelopmental disorder and one of the most common causes of mental retardation in females, with an incidence of 1 in 10,000–15,000 (ref. 2). Patients with classic RTT appear to develop normally until 6–18 months of age, then gradually lose speech and purposeful hand use, and develop microcephaly, seizures, autism, ataxia, intermittent hyperventilation and stereotypic hand movements. After initial regression, the condition stabilizes and patients usually survive into adulthood. As RTT occurs almost exclusively in females, it has been proposed that RTT is caused by an X-linked dominant mutation with lethality in hemizygous males. Previous exclusion mapping studies using RTT families mapped the locus to Xq28 (refs 6,9,10,11). Using a systematic gene screening approach, we have identified mutations in the gene (MECP2 ) encoding X-linked methyl-CpG-binding protein 2 (MeCP2) as the cause of some cases of RTT. MeCP2 selectively binds CpG dinucleotides in the mammalian genome and mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A (refs 12,13). In 5 of 21 sporadic patients, we found 3 de novo missense mutations in the region encoding the highly conserved methyl-binding domain (MBD) as well as a de novo frameshift and a de novo nonsense mutation, both of which disrupt the transcription repression domain (TRD). In two affected half-sisters of a RTT family, we found segregation of an additional missense mutation not detected in their obligate carrier mother. This suggests that the mother is a germline mosaic for this mutation. Our study reports the first disease-causing mutations in RTT and points to abnormal epigenetic regulation as the mechanism underlying the pathogenesis of RTT.
Nature | 2005
Jean François Rual; Kavitha Venkatesan; Tong Hao; Tomoko Hirozane-Kishikawa; Amélie Dricot; Ning Li; Gabriel F. Berriz; Francis D. Gibbons; Matija Dreze; Nono Ayivi-Guedehoussou; Niels Klitgord; Christophe Simon; Mike Boxem; Jennifer Rosenberg; Debra S. Goldberg; Lan V. Zhang; Sharyl L. Wong; Giovanni Franklin; Siming Li; Joanna S. Albala; Janghoo Lim; Carlene Fraughton; Estelle Llamosas; Sebiha Cevik; Camille Bex; Philippe Lamesch; Robert S. Sikorski; Jean Vandenhaute; Huda Y. Zoghbi; Alex Smolyar
Systematic mapping of protein–protein interactions, or ‘interactome’ mapping, was initiated in model organisms, starting with defined biological processes and then expanding to the scale of the proteome. Although far from complete, such maps have revealed global topological and dynamic features of interactome networks that relate to known biological properties, suggesting that a human interactome map will provide insight into development and disease mechanisms at a systems level. Here we describe an initial version of a proteome-scale map of human binary protein–protein interactions. Using a stringent, high-throughput yeast two-hybrid system, we tested pairwise interactions among the products of ∼8,100 currently available Gateway-cloned open reading frames and detected ∼2,800 interactions. This data set, called CCSB-HI1, has a verification rate of ∼78% as revealed by an independent co-affinity purification assay, and correlates significantly with other biological attributes. The CCSB-HI1 data set increases by ∼70% the set of available binary interactions within the tested space and reveals more than 300 new connections to over 100 disease-associated proteins. This work represents an important step towards a systematic and comprehensive human interactome project.
Nature Genetics | 1997
Olga Zhuchenko; Jennifer Bailey; Penelope E. Bonnen; Tetsuo Ashizawa; David W. Stockton; Christopher I. Amos; William B. Dobyns; S. H. Subramony; Huda Y. Zoghbi; Cheng Chi Lee
A polymorphic CAG repeat was identified in the human α1A voltage-dependent calcium channel subunit. To test the hypothesis that expansion of this CAG repeat could be the cause of an inherited progressive ataxia, we genotyped a large number of unrelated controls and ataxia patients. Eight unrelated patients with late onset ataxia had alleles with larger repeat numbers (21‐27) compared to the number of repeats (4‐16) in 475 non‐ataxia individuals. Analysis of the repeat length in families of the affected individuals revealed that the expansion segregated with the phenotype in every patient. We identified six isoforms of the human α1A calcium channel subunit. The CAG repeat is within the open reading frame and is predicted to encode glutamine in three of the isoforms. We conclude that a small polyglutamine expansion in the human α1A calcium channel is most likely the cause of a newly classified autosomal dominant spinocerebellar ataxia, SCA6.
Science | 2008
Maria H. Chahrour; Sung Yun Jung; Chad A. Shaw; Xiaobo Zhou; Stephen T. C. Wong; Jun Qin; Huda Y. Zoghbi
Mutations in the gene encoding the transcriptional repressor methyl-CpG binding protein 2 (MeCP2) cause the neurodevelopmental disorder Rett syndrome. Loss of function as well as increased dosage of the MECP2 gene cause a host of neuropsychiatric disorders. To explore the molecular mechanism(s) underlying these disorders, we examined gene expression patterns in the hypothalamus of mice that either lack or overexpress MeCP2. In both models, MeCP2 dysfunction induced changes in the expression levels of thousands of genes, but unexpectedly the majority of genes (∼85%) appeared to be activated by MeCP2. We selected six genes and confirmed that MeCP2 binds to their promoters. Furthermore, we showed that MeCP2 associates with the transcriptional activator CREB1 at the promoter of an activated target but not a repressed target. These studies suggest that MeCP2 regulates the expression of a wide range of genes in the hypothalamus and that it can function as both an activator and a repressor of transcription.
Cell | 1998
Ivan A. Klement; Pamela J. Skinner; Michael D. Kaytor; Hong Yi; Steven M. Hersch; H. Brent Clark; Huda Y. Zoghbi; Harry T. Orr
Transgenic mice carrying the spinocerebellar ataxia type 1 (SCA1) gene, a polyglutamine neurodegenerative disorder, develop ataxia with ataxin-1 localized to aggregates within cerebellar Purkinje cells nuclei. To examine the importance of nuclear localization and aggregation in pathogenesis, mice expressing ataxin-1[82] with a mutated NLS were established. These mice did not develop disease, demonstrating that nuclear localization is critical for pathogenesis. In a second series of transgenic mice, ataxin-1[77] containing a deletion within the self-association region was expressed within Purkinje cells nuclei. These mice developed ataxia and Purkinje cell pathology similar to the original SCA1 mice. However, no evidence of nuclear ataxin-1 aggregates was found. Thus, although nuclear localization of ataxin-1 is necessary, nuclear aggregation of ataxin-1 is not required to initiate pathogenesis in transgenic mice.
Neuron | 2007
Maria H. Chahrour; Huda Y. Zoghbi
The postnatal neurodevelopmental disorder Rett syndrome (RTT) is caused by mutations in the gene encoding methyl-CpG binding protein 2 (MeCP2), a transcriptional repressor involved in chromatin remodeling and the modulation of RNA splicing. MECP2 aberrations result in a constellation of neuropsychiatric abnormalities, whereby both loss of function and gain in MECP2 dosage lead to similar neurological phenotypes. Recent studies demonstrate disease reversibility in RTT mouse models, suggesting that the neurological defects in MECP2 disorders are not permanent. To investigate the potential for restoring neuronal function in RTT patients, it is essential to identify MeCP2 targets or modifiers of the phenotype that can be therapeutically modulated. Moreover, deciphering the molecular underpinnings of RTT is likely to contribute to the understanding of the pathogenesis of a broader class of neuropsychiatric disorders.
Nature Genetics | 1998
Huda Y. Zoghbi; Harry T. Orr; Donald B. Defranco; Michael A. Mancini; David L. Stenoien; Christopher J. Cummings
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by expansion of a polyglutamine tract in ataxin-1. In affected neurons of SCA1 patients and transgenic mice, mutant ataxin-1 accumulates in a single, ubiquitin-positive nuclear inclusion. In this study, we show that these inclusions stain positively for the 20S proteasome and the molecular chaperone HDJ-2/HSDJ. Similarly, HeLa cells transfected with mutant ataxin-1 develop nuclear aggregates which colocalize with the 20S proteasome and endogenous HDJ-2/HSDJ. Overexpression of wild-type HDJ-2/HSDJ in HeLa cells decreases the frequency of ataxin-1 aggregation. These data suggest that protein misfolding is responsible for the nuclear aggregates seen in SCA1, and that overexpression of a DnaJ chaperone promotes the recognition of a misfolded polyglutamine repeat protein, allowing its refolding and/or ubiquitin-dependent degradation.
Neuron | 2002
Mona D. Shahbazian; Juan I. Young; Lisa A. Yuva-Paylor; Corinne M. Spencer; Barbara Antalffy; Jeffrey L. Noebels; Dawna L. Armstrong; Richard Paylor; Huda Y. Zoghbi
Mutations in the methyl-CpG binding protein 2 (MECP2) gene cause Rett syndrome (RTT), a neurodevelopmental disorder characterized by the loss of language and motor skills during early childhood. We generated mice with a truncating mutation similar to those found in RTT patients. These mice appeared normal and exhibited normal motor function for about 6 weeks, but then developed a progressive neurological disease that includes many features of RTT: tremors, motor impairments, hypoactivity, increased anxiety-related behavior, seizures, kyphosis, and stereotypic forelimb motions. Additionally, we show that although the truncated MeCP2 protein in these mice localizes normally to heterochromatic domains in vivo, histone H3 is hyperacetylated, providing evidence that the chromatin architecture is abnormal and that gene expression may be misregulated in this model of Rett syndrome.
Nature | 2010
Hsiao-Tuan Chao; Hongmei Chen; Rodney C. Samaco; Mingshan Xue; Maria H. Chahrour; Jong Yoo; Jeffrey L. Neul; Shiaoching Gong; Hui-Chen Lu; Nathaniel Heintz; Marc Ekker; John L.R. Rubenstein; Jeffrey L. Noebels; Christian Rosenmund; Huda Y. Zoghbi
Mutations in the X-linked MECP2 gene, which encodes the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2), cause Rett syndrome and several neurodevelopmental disorders including cognitive disorders, autism, juvenile-onset schizophrenia and encephalopathy with early lethality. Rett syndrome is characterized by apparently normal early development followed by regression, motor abnormalities, seizures and features of autism, especially stereotyped behaviours. The mechanisms mediating these features are poorly understood. Here we show that mice lacking Mecp2 from GABA (γ-aminobutyric acid)-releasing neurons recapitulate numerous Rett syndrome and autistic features, including repetitive behaviours. Loss of MeCP2 from a subset of forebrain GABAergic neurons also recapitulates many features of Rett syndrome. MeCP2-deficient GABAergic neurons show reduced inhibitory quantal size, consistent with a presynaptic reduction in glutamic acid decarboxylase 1 (Gad1) and glutamic acid decarboxylase 2 (Gad2) levels, and GABA immunoreactivity. These data demonstrate that MeCP2 is critical for normal function of GABA-releasing neurons and that subtle dysfunction of GABAergic neurons contributes to numerous neuropsychiatric phenotypes.
Cell | 2006
Janghoo Lim; Tong Hao; Chad A. Shaw; Akash J. Patel; Gabor Szabo; Jean François Rual; C. Joseph Fisk; Ning Li; Alex Smolyar; David E. Hill; Albert-László Barabási; Marc Vidal; Huda Y. Zoghbi
Many human inherited neurodegenerative disorders are characterized by loss of balance due to cerebellar Purkinje cell (PC) degeneration. Although the disease-causing mutations have been identified for a number of these disorders, the normal functions of the proteins involved remain, in many cases, unknown. To gain insight into the function of proteins involved in PC degeneration, we developed an interaction network for 54 proteins involved in 23 inherited ataxias and expanded the network by incorporating literature-curated and evolutionarily conserved interactions. We identified 770 mostly novel protein-protein interactions using a stringent yeast two-hybrid screen; of 75 pairs tested, 83% of the interactions were verified in mammalian cells. Many ataxia-causing proteins share interacting partners, a subset of which have been found to modify neurodegeneration in animal models. This interactome thus provides a tool for understanding pathogenic mechanisms common for this class of neurodegenerative disorders and for identifying candidate genes for inherited ataxias.