Antonio Torralba
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonio Torralba.
International Journal of Computer Vision | 2001
Aude Oliva; Antonio Torralba
In this paper, we propose a computational model of the recognition of real world scenes that bypasses the segmentation and the processing of individual objects or regions. The procedure is based on a very low dimensional representation of the scene, that we term the Spatial Envelope. We propose a set of perceptual dimensions (naturalness, openness, roughness, expansion, ruggedness) that represent the dominant spatial structure of a scene. Then, we show that these dimensions may be reliably estimated using spectral and coarsely localized information. The model generates a multidimensional space in which scenes sharing membership in semantic categories (e.g., streets, highways, coasts) are projected closed together. The performance of the spatial envelope model shows that specific information about object shape or identity is not a requirement for scene categorization and that modeling a holistic representation of the scene informs about its probable semantic category.
International Journal of Computer Vision | 2008
Bryan C. Russell; Antonio Torralba; Kevin P. Murphy; William T. Freeman
Abstract We seek to build a large collection of images with ground truth labels to be used for object detection and recognition research. Such data is useful for supervised learning and quantitative evaluation. To achieve this, we developed a web-based tool that allows easy image annotation and instant sharing of such annotations. Using this annotation tool, we have collected a large dataset that spans many object categories, often containing multiple instances over a wide variety of images. We quantify the contents of the dataset and compare against existing state of the art datasets used for object recognition and detection. Also, we show how to extend the dataset to automatically enhance object labels with WordNet, discover object parts, recover a depth ordering of objects in a scene, and increase the number of labels using minimal user supervision and images from the web.
computer vision and pattern recognition | 2010
Jianxiong Xiao; James Hays; Krista A. Ehinger; Aude Oliva; Antonio Torralba
Scene categorization is a fundamental problem in computer vision. However, scene understanding research has been constrained by the limited scope of currently-used databases which do not capture the full variety of scene categories. Whereas standard databases for object categorization contain hundreds of different classes of objects, the largest available dataset of scene categories contains only 15 classes. In this paper we propose the extensive Scene UNderstanding (SUN) database that contains 899 categories and 130,519 images. We use 397 well-sampled categories to evaluate numerous state-of-the-art algorithms for scene recognition and establish new bounds of performance. We measure human scene classification performance on the SUN database and compare this with computational methods. Additionally, we study a finer-grained scene representation to detect scenes embedded inside of larger scenes.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2008
Antonio Torralba; Rob Fergus; William T. Freeman
With the advent of the Internet, billions of images are now freely available online and constitute a dense sampling of the visual world. Using a variety of non-parametric methods, we explore this world with the aid of a large dataset of 79,302,017 images collected from the Internet. Motivated by psychophysical results showing the remarkable tolerance of the human visual system to degradations in image resolution, the images in the dataset are stored as 32 x 32 color images. Each image is loosely labeled with one of the 75,062 non-abstract nouns in English, as listed in the Wordnet lexical database. Hence the image database gives a comprehensive coverage of all object categories and scenes. The semantic information from Wordnet can be used in conjunction with nearest-neighbor methods to perform object classification over a range of semantic levels minimizing the effects of labeling noise. For certain classes that are particularly prevalent in the dataset, such as people, we are able to demonstrate a recognition performance comparable to class-specific Viola-Jones style detectors.
international conference on computer vision | 2009
Tilke Judd; Krista A. Ehinger; Antonio Torralba
For many applications in graphics, design, and human computer interaction, it is essential to understand where humans look in a scene. Where eye tracking devices are not a viable option, models of saliency can be used to predict fixation locations. Most saliency approaches are based on bottom-up computation that does not consider top-down image semantics and often does not match actual eye movements. To address this problem, we collected eye tracking data of 15 viewers on 1003 images and use this database as training and testing examples to learn a model of saliency based on low, middle and high-level image features. This large database of eye tracking data is publicly available with this paper.
Psychological Review | 2006
Antonio Torralba; Aude Oliva; Monica S. Castelhano; John M. Henderson
Many experiments have shown that the human visual system makes extensive use of contextual information for facilitating object search in natural scenes. However, the question of how to formally model contextual influences is still open. On the basis of a Bayesian framework, the authors present an original approach of attentional guidance by global scene context. The model comprises 2 parallel pathways; one pathway computes local features (saliency) and the other computes global (scene-centered) features. The contextual guidance model of attention combines bottom-up saliency, scene context, and top-down mechanisms at an early stage of visual processing and predicts the image regions likely to be fixated by human observers performing natural search tasks in real-world scenes.
Progress in Brain Research | 2006
Aude Oliva; Antonio Torralba
Humans can recognize the gist of a novel image in a single glance, independent of its complexity. How is this remarkable feat accomplished? On the basis of behavioral and computational evidence, this paper describes a formal approach to the representation and the mechanism of scene gist understanding, based on scene-centered, rather than object-centered primitives. We show that the structure of a scene image can be estimated by the mean of global image features, providing a statistical summary of the spatial layout properties (Spatial Envelope representation) of the scene. Global features are based on configurations of spatial scales and are estimated without invoking segmentation or grouping operations. The scene-centered approach is not an alternative to local image analysis but would serve as a feed-forward and parallel pathway of visual processing, able to quickly constrain local feature analysis and enhance object recognition in cluttered natural scenes.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2011
Ce Liu; Jenny Yuen; Antonio Torralba
While image alignment has been studied in different areas of computer vision for decades, aligning images depicting different scenes remains a challenging problem. Analogous to optical flow, where an image is aligned to its temporally adjacent frame, we propose SIFT flow, a method to align an image to its nearest neighbors in a large image corpus containing a variety of scenes. The SIFT flow algorithm consists of matching densely sampled, pixelwise SIFT features between two images while preserving spatial discontinuities. The SIFT features allow robust matching across different scene/object appearances, whereas the discontinuity-preserving spatial model allows matching of objects located at different parts of the scene. Experiments show that the proposed approach robustly aligns complex scene pairs containing significant spatial differences. Based on SIFT flow, we propose an alignment-based large database framework for image analysis and synthesis, where image information is transferred from the nearest neighbors to a query image according to the dense scene correspondence. This framework is demonstrated through concrete applications such as motion field prediction from a single image, motion synthesis via object transfer, satellite image registration, and face recognition.
International Journal of Computer Vision | 2003
Antonio Torralba
There is general consensus that context can be a rich source of information about an objects identity, location and scale. In fact, the structure of many real-world scenes is governed by strong configurational rules akin to those that apply to a single object. Here we introduce a simple framework for modeling the relationship between context and object properties based on the correlation between the statistics of low-level features across the entire scene and the objects that it contains. The resulting scheme serves as an effective procedure for object priming, context driven focus of attention and automatic scale-selection on real-world scenes.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2007
Antonio Torralba; Kevin P. Murphy; William T. Freeman
We consider the problem of detecting a large number of different classes of objects in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, at multiple locations and scales. This can be slow and can require a lot of training data since each classifier requires the computation of many different image features. In particular, for independently trained detectors, the (runtime) computational complexity and the (training-time) sample complexity scale linearly with the number of classes to be detected. We present a multitask learning procedure, based on boosted decision stumps, that reduces the computational and sample complexity by finding common features that can be shared across the classes (and/or views). The detectors for each class are trained jointly, rather than independently. For a given performance level, the total number of features required and, therefore, the runtime cost of the classifier, is observed to scale approximately logarithmically with the number of classes. The features selected by joint training are generic edge-like features, whereas the features chosen by training each class separately tend to be more object-specific. The generic features generalize better and considerably reduce the computational cost of multiclass object detection