William T. Freeman
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William T. Freeman.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 1991
William T. Freeman; Edward H. Adelson
The authors present an efficient architecture to synthesize filters of arbitrary orientations from linear combinations of basis filters, allowing one to adaptively steer a filter to any orientation, and to determine analytically the filter output as a function of orientation. Steerable filters may be designed in quadrature pairs to allow adaptive control over phase as well as orientation. The authors show how to design and steer the filters and present examples of their use in the analysis of orientation and phase, angularly adaptive filtering, edge detection, and shape from shading. One can also build a self-similar steerable pyramid representation. The same concepts can be generalized to the design of 3-D steerable filters. >
International Journal of Computer Vision | 2008
Bryan C. Russell; Antonio Torralba; Kevin P. Murphy; William T. Freeman
Abstract We seek to build a large collection of images with ground truth labels to be used for object detection and recognition research. Such data is useful for supervised learning and quantitative evaluation. To achieve this, we developed a web-based tool that allows easy image annotation and instant sharing of such annotations. Using this annotation tool, we have collected a large dataset that spans many object categories, often containing multiple instances over a wide variety of images. We quantify the contents of the dataset and compare against existing state of the art datasets used for object recognition and detection. Also, we show how to extend the dataset to automatically enhance object labels with WordNet, discover object parts, recover a depth ordering of objects in a scene, and increase the number of labels using minimal user supervision and images from the web.
international conference on computer graphics and interactive techniques | 2001
Alexei A. Efros; William T. Freeman
We present a simple image-based method of generating novel visual appearance in which a new image is synthesized by stitching together small patches of existing images. We call this process image quilting. First, we use quilting as a fast and very simple texture synthesis algorithm which produces surprisingly good results for a wide range of textures. Second, we extend the algorithm to perform texture transfer — rendering an object with a texture taken from a different object. More generally, we demonstrate how an image can be re-rendered in the style of a different image. The method works directly on the images and does not require 3D information.
International Journal of Computer Vision | 2000
William T. Freeman; Egon C. Pasztor; Owen T. Carmichael
We describe a learning-based method for low-level vision problems—estimating scenes from images. We generate a synthetic world of scenes and their corresponding rendered images, modeling their relationships with a Markov network. Bayesian belief propagation allows us to efficiently find a local maximum of the posterior probability for the scene, given an image. We call this approach VISTA—Vision by Image/Scene TrAining.We apply VISTA to the “super-resolution” problem (estimating high frequency details from a low-resolution image), showing good results. To illustrate the potential breadth of the technique, we also apply it in two other problem domains, both simplified. We learn to distinguish shading from reflectance variations in a single image under particular lighting conditions. For the motion estimation problem in a “blobs world”, we show figure/ground discrimination, solution of the aperture problem, and filling-in arising from application of the same probabilistic machinery.
international conference on computer graphics and interactive techniques | 2006
Rob Fergus; Barun Singh; Aaron Hertzmann; Sam T. Roweis; William T. Freeman
Camera shake during exposure leads to objectionable image blur and ruins many photographs. Conventional blind deconvolution methods typically assume frequency-domain constraints on images, or overly simplified parametric forms for the motion path during camera shake. Real camera motions can follow convoluted paths, and a spatial domain prior can better maintain visually salient image characteristics. We introduce a method to remove the effects of camera shake from seriously blurred images. The method assumes a uniform camera blur over the image and negligible in-plane camera rotation. In order to estimate the blur from the camera shake, the user must specify an image region without saturation effects. We show results for a variety of digital photographs taken from personal photo collections.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2008
Antonio Torralba; Rob Fergus; William T. Freeman
With the advent of the Internet, billions of images are now freely available online and constitute a dense sampling of the visual world. Using a variety of non-parametric methods, we explore this world with the aid of a large dataset of 79,302,017 images collected from the Internet. Motivated by psychophysical results showing the remarkable tolerance of the human visual system to degradations in image resolution, the images in the dataset are stored as 32 x 32 color images. Each image is loosely labeled with one of the 75,062 non-abstract nouns in English, as listed in the Wordnet lexical database. Hence the image database gives a comprehensive coverage of all object categories and scenes. The semantic information from Wordnet can be used in conjunction with nearest-neighbor methods to perform object classification over a range of semantic levels minimizing the effects of labeling noise. For certain classes that are particularly prevalent in the dataset, such as people, we are able to demonstrate a recognition performance comparable to class-specific Viola-Jones style detectors.
IEEE Transactions on Information Theory | 1992
Eero P. Simoncelli; William T. Freeman; Edward H. Adelson; David J. Heeger
One of the major drawbacks of orthogonal wavelet transforms is their lack of translation invariance: the content of wavelet subbands is unstable under translations of the input signal. Wavelet transforms are also unstable with respect to dilations of the input signal and, in two dimensions, rotations of the input signal. The authors formalize these problems by defining a type of translation invariance called shiftability. In the spatial domain, shiftability corresponds to a lack of aliasing; thus, the conditions under which the property holds are specified by the sampling theorem. Shiftability may also be applied in the context of other domains, particularly orientation and scale. Jointly shiftable transforms that are simultaneously shiftable in more than one domain are explored. Two examples of jointly shiftable transforms are designed and implemented: a 1-D transform that is jointly shiftable in position and scale, and a 2-D transform that is jointly shiftable in position and orientation. The usefulness of these image representations for scale-space analysis, stereo disparity measurement, and image enhancement is demonstrated. >
international conference on computer graphics and interactive techniques | 2007
Anat Levin; Rob Fergus; William T. Freeman
A conventional camera captures blurred versions of scene information away from the plane of focus. Camera systems have been proposed that allow for recording all-focus images, or for extracting depth, but to record both simultaneously has required more extensive hardware and reduced spatial resolution. We propose a simple modification to a conventional camera that allows for the simultaneous recovery of both (a) high resolution image information and (b) depth information adequate for semi-automatic extraction of a layered depth representation of the image. Our modification is to insert a patterned occluder within the aperture of the camera lens, creating a coded aperture. We introduce a criterion for depth discriminability which we use to design the preferred aperture pattern. Using a statistical model of images, we can recover both depth information and an all-focus image from single photographs taken with the modified camera. A layered depth map is then extracted, requiring user-drawn strokes to clarify layer assignments in some cases. The resulting sharp image and layered depth map can be combined for various photographic applications, including automatic scene segmentation, post-exposure refocusing, or re-rendering of the scene from an alternate viewpoint.
international conference on image processing | 1995
Eero P. Simoncelli; William T. Freeman
We describe an architecture for efficient and accurate linear decomposition of an image into scale and orientation subbands. The basis functions of this decomposition are directional derivative operators of any desired order. We describe the construction and implementation of the transform.
computer vision and pattern recognition | 2009
Anat Levin; Yair Weiss; William T. Freeman
Blind deconvolution is the recovery of a sharp version of a blurred image when the blur kernel is unknown. Recent algorithms have afforded dramatic progress, yet many aspects of the problem remain challenging and hard to understand. The goal of this paper is to analyze and evaluate recent blind deconvolution algorithms both theoretically and experimentally. We explain the previously reported failure of the naive MAP approach by demonstrating that it mostly favors no-blur explanations. On the other hand we show that since the kernel size is often smaller than the image size a MAP estimation of the kernel alone can be well constrained and accurately recover the true blur. The plethora of recent deconvolution techniques makes an experimental evaluation on ground-truth data important. We have collected blur data with ground truth and compared recent algorithms under equal settings. Additionally, our data demonstrates that the shift-invariant blur assumption made by most algorithms is often violated.