Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonios Makropoulos is active.

Publication


Featured researches published by Antonios Makropoulos.


IEEE Transactions on Medical Imaging | 2014

Automatic Whole Brain MRI Segmentation of the Developing Neonatal Brain

Antonios Makropoulos; Ioannis S. Gousias; Christian Ledig; Paul Aljabar; Ahmed Serag; Joseph V. Hajnal; A. David Edwards; Serena J. Counsell; Daniel Rueckert

Magnetic resonance (MR) imaging is increasingly being used to assess brain growth and development in infants. Such studies are often based on quantitative analysis of anatomical segmentations of brain MR images. However, the large changes in brain shape and appearance associated with development, the lower signal to noise ratio and partial volume effects in the neonatal brain present challenges for automatic segmentation of neonatal MR imaging data. In this study, we propose a framework for accurate intensity-based segmentation of the developing neonatal brain, from the early preterm period to term-equivalent age, into 50 brain regions. We present a novel segmentation algorithm that models the intensities across the whole brain by introducing a structural hierarchy and anatomical constraints. The proposed method is compared to standard atlas-based techniques and improves label overlaps with respect to manual reference segmentations. We demonstrate that the proposed technique achieves highly accurate results and is very robust across a wide range of gestational ages, from 24 weeks gestational age to term-equivalent age.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Specialization and integration of functional thalamocortical connectivity in the human infant

Hilary Toulmin; Christian F. Beckmann; Jonathan O'Muircheartaigh; Gareth Ball; Pumza Nongena; Antonios Makropoulos; Ashraf Ederies; Serena J. Counsell; Nigel Kennea; Tomoki Arichi; Nora Tusor; Mary A. Rutherford; Denis Azzopardi; Nuria Gonzalez-Cinca; Joseph V. Hajnal; A. David Edwards

Significance We investigated the way in which the human thalamus and cortex are functionally connected at the time of normal birth. We found the functional parcellation of the thalamus to be a good facsimile of that found in adult studies. However, although primary cortical regions were almost entirely connected to specific thalamic regions, heteromodal cortex was more widely connected to multiple thalamic regions, giving the potential for an integrative role for these circuits. Development seemed to have been modulated by the experience of premature extrauterine life, with an increase in connectivity to primary sensory cortex, but reduced connectivity between areas of the thalamus and heteromodal cortex known to support higher cognitive functions. Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions.


NeuroImage | 2016

Regional growth and atlasing of the developing human brain.

Antonios Makropoulos; Paul Aljabar; Robert Wright; Britta Hüning; Nazakat Merchant; Tomoki Arichi; Nora Tusor; Joseph V. Hajnal; A. David Edwards; Serena J. Counsell; Daniel Rueckert

Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45 weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area.


Medical Image Analysis | 2015

Evaluation of automatic neonatal brain segmentation algorithms:the NeoBrainS12 challenge

Ivana Išgum; Manon J.N.L. Benders; Brian B. Avants; M. Jorge Cardoso; Serena J. Counsell; Elda Fischi Gomez; Laura Gui; Petra S. Hűppi; Karina J. Kersbergen; Antonios Makropoulos; Andrew Melbourne; Pim Moeskops; Christian P. Mol; Maria Kuklisova-Murgasova; Daniel Rueckert; Julia A. Schnabel; Vedran Srhoj-Egekher; Jue Wu; Siying Wang; Linda S. de Vries; Max A. Viergever

A number of algorithms for brain segmentation in preterm born infants have been published, but a reliable comparison of their performance is lacking. The NeoBrainS12 study (http://neobrains12.isi.uu.nl), providing three different image sets of preterm born infants, was set up to provide such a comparison. These sets are (i) axial scans acquired at 40 weeks corrected age, (ii) coronal scans acquired at 30 weeks corrected age and (iii) coronal scans acquired at 40 weeks corrected age. Each of these three sets consists of three T1- and T2-weighted MR images of the brain acquired with a 3T MRI scanner. The task was to segment cortical grey matter, non-myelinated and myelinated white matter, brainstem, basal ganglia and thalami, cerebellum, and cerebrospinal fluid in the ventricles and in the extracerebral space separately. Any team could upload the results and all segmentations were evaluated in the same way. This paper presents the results of eight participating teams. The results demonstrate that the participating methods were able to segment all tissue classes well, except myelinated white matter.


NeuroImage | 2014

Resting State fMRI in the moving fetus: A robust framework for motion, bias field and spin history correction

Giulio Ferrazzi; Maria Murgasova; Tomoki Arichi; Christina Malamateniou; Matthew Fox; Antonios Makropoulos; Joanna M. Allsop; Mary A. Rutherford; Shaihan J. Malik; Paul Aljabar; Joseph V. Hajnal

There is growing interest in exploring fetal functional brain development, particularly with Resting State fMRI. However, during a typical fMRI acquisition, the womb moves due to maternal respiration and the fetus may perform large-scale and unpredictable movements. Conventional fMRI processing pipelines, which assume that brain movements are infrequent or at least small, are not suitable. Previous published studies have tackled this problem by adopting conventional methods and discarding as much as 40% or more of the acquired data. In this work, we developed and tested a processing framework for fetal Resting State fMRI, capable of correcting gross motion. The method comprises bias field and spin history corrections in the scanner frame of reference, combined with slice to volume registration and scattered data interpolation to place all data into a consistent anatomical space. The aim is to recover an ordered set of samples suitable for further analysis using standard tools such as Group Independent Component Analysis (Group ICA). We have tested the approach using simulations and in vivo data acquired at 1.5 T. After full motion correction, Group ICA performed on a population of 8 fetuses extracted 20 networks, 6 of which were identified as matching those previously observed in preterm babies.


NeuroImage | 2017

Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex

Salim Arslan; Sofia Ira Ktena; Antonios Makropoulos; Emma C. Robinson; Daniel Rueckert; Sarah Parisot

ABSTRACT The macro‐connectome elucidates the pathways through which brain regions are structurally connected or functionally coupled to perform a specific cognitive task. It embodies the notion of representing and understanding all connections within the brain as a network, while the subdivision of the brain into interacting functional units is inherent in its architecture. As a result, the definition of network nodes is one of the most critical steps in connectivity network analysis. Although brain atlases obtained from cytoarchitecture or anatomy have long been used for this task, connectivity‐driven methods have arisen only recently, aiming to delineate more homogeneous and functionally coherent regions. This study provides a systematic comparison between anatomical, connectivity‐driven and random parcellation methods proposed in the thriving field of brain parcellation. Using resting‐state functional MRI data from the Human Connectome Project and a plethora of quantitative evaluation techniques investigated in the literature, we evaluate 10 subject‐level and 24 groupwise parcellation methods at different resolutions. We assess the accuracy of parcellations from four different aspects: (1) reproducibility across different acquisitions and groups, (2) fidelity to the underlying connectivity data, (3) agreement with fMRI task activation, myelin maps, and cytoarchitectural areas, and (4) network analysis. This extensive evaluation of different parcellations generated at the subject and group level highlights the strengths and shortcomings of the various methods and aims to provide a guideline for the choice of parcellation technique and resolution according to the task at hand. The results obtained in this study suggest that there is no optimal method able to address all the challenges faced in this endeavour simultaneously. HIGHLIGHTSA systematic comparison of state‐of‐the‐art parcellation methods is provided.10 subject‐ and 24 group‐level methods are evaluated using publicly available data.Experiments consist of quantitative assessments of parcellations at varying scales.Several criteria are simultaneously considered to evaluate parcellations.Results suggest that there is no optimal method able to address all the challenges.


NeuroImage | 2015

Construction of a fetal spatio-temporal cortical surface atlas from in utero MRI: Application of spectral surface matching.

Robert Wright; Antonios Makropoulos; Vanessa Kyriakopoulou; Prachi Patkee; Lisa M. Koch; Mary A. Rutherford; Joseph V. Hajnal; Daniel Rueckert; Paul Aljabar

In this study, we construct a spatio-temporal surface atlas of the developing cerebral cortex, which is an important tool for analysing and understanding normal and abnormal cortical development. In utero Magnetic Resonance Imaging (MRI) of 80 healthy fetuses was performed, with a gestational age range of 21.7 to 38.9 weeks. Topologically correct cortical surface models were extracted from reconstructed 3D MRI volumes. Accurate correspondences were obtained by applying a joint spectral analysis to cortices for sets of subjects close to a specific age. Sulcal alignment was found to be accurate in comparison to spherical demons, a state of the art registration technique for aligning 2D cortical representations (average Fréchet distance≈0.4 mm at 30 weeks). We construct consistent, unbiased average cortical surface templates, for each week of gestation, from age-matched groups of surfaces by applying kernel regression in the spectral domain. These were found to accurately capture the average cortical shape of individuals within the cohort, suggesting a good alignment of cortical geometry. Each spectral embedding and its corresponding cortical surface template provide a dual reference space where cortical geometry is aligned and a vertex-wise morphometric analysis can be undertaken.


STIA'12 Proceedings of the Second international conference on Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data | 2012

Unsupervised learning of shape complexity: application to brain development

Ahmed Serag; Ioannis S. Gousias; Antonios Makropoulos; Paul Aljabar; Joseph V. Hajnal; James P. Boardman; Serena J. Counsell; Daniel Rueckert

This paper presents a framework for unsupervised learning of shape complexity in the developing brain. It learns the complexity in different brain structures by applying several shape complexity measures to each individual structure, and then using feature selection to select the measures that best describe the changes in complexity of each structure. Then, feature selection is applied again to assign a score to each structure, in order to find which structure can be a good biomarker of brain development. This study was carried out using T2-weighted MR images from 224 premature neonates (the age range at the time of scan was 26.7 to 44.86 weeks post-menstrual age). The advantage of the proposed framework is that one can extract as many ROIs as desired, and the framework automatically finds the ones which can be used as good biomarkers. However, the example application focuses on neonatal brain image data, the proposed framework for combining information from multiple measures may be applied more generally to other populations and other forms of imaging data.


NeuroImage | 2018

The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction

Antonios Makropoulos; Emma C. Robinson; Andreas Schuh; Robert Wright; Sean P. Fitzgibbon; Jelena Bozek; Serena J. Counsell; Johannes Steinweg; K Vecchiato; Jonathan Passerat-Palmbach; G Lenz; F Mortari; T Tenev; Eugene P. Duff; Matteo Bastiani; Lucilio Cordero-Grande; Emer Hughes; Nora Tusor; Tournier J-D.; Jana Hutter; Anthony N. Price; Teixeira Rpag.; Maria Murgasova; Suresh Victor; Christopher Kelly; Mary A. Rutherford; Stephen M. Smith; Anthony D Edwards; Joseph V. Hajnal; Mark Jenkinson

The Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional connectome of early life. Understanding this connectome in detail may provide insights into normal as well as abnormal patterns of brain development. Following established best practices adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the project utilises cortical surface-based processing pipelines. In this paper, we propose a fully automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which has been specifically designed to address considerable differences between adult and neonatal brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be processed fully automatically; generating cortical surface models that are topologically correct, and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results improve on state-of-the-art neonatal tissue segmentation models and significant errors were found in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the modelling of emerging patterns of brain connectivity.


NeuroImage | 2018

Multimodal surface matching with higher-order smoothness constraints.

Emma C. Robinson; K Garcia; Matthew F. Glasser; Z Chen; Timothy S. Coalson; Antonios Makropoulos; Jelena Bozek; Robert Wright; Andreas Schuh; Matthew Webster; Jana Hutter; Anthony N. Price; L Cordero Grande; Emer Hughes; Nora Tusor; Philip V. Bayly; D. C. Van Essen; Stephen M. Smith; A D Edwards; Joseph V. Hajnal; Mark Jenkinson; Ben Glocker; Daniel Rueckert

&NA; In brain imaging, accurate alignment of cortical surfaces is fundamental to the statistical sensitivity and spatial localisation of group studies, and cortical surface‐based alignment has generally been accepted to be superior to volume‐based approaches at aligning cortical areas. However, human subjects have considerable variation in cortical folding, and in the location of functional areas relative to these folds. This makes alignment of cortical areas a challenging problem. The Multimodal Surface Matching (MSM) tool is a flexible, spherical registration approach that enables accurate registration of surfaces based on a variety of different features. Using MSM, we have previously shown that driving cross‐subject surface alignment, using areal features, such as resting state‐networks and myelin maps, improves group task fMRI statistics and map sharpness. However, the initial implementation of MSMs regularisation function did not penalize all forms of surface distortion evenly. In some cases, this allowed peak distortions to exceed neurobiologically plausible limits, unless regularisation strength was increased to a level which prevented the algorithm from fully maximizing surface alignment. Here we propose and implement a new regularisation penalty, derived from physically relevant equations of strain (deformation) energy, and demonstrate that its use leads to improved and more robust alignment of multimodal imaging data. In addition, since spherical warps incorporate projection distortions that are unavoidable when mapping from a convoluted cortical surface to the sphere, we also propose constraints that enforce smooth deformation of cortical anatomies. We test the impact of this approach for longitudinal modelling of cortical development for neonates (born between 31 and 43 weeks of post‐menstrual age) and demonstrate that the proposed method increases the biological interpretability of the distortion fields and improves the statistical significance of population‐based analysis relative to other spherical methods. HighlightsAdvances the Multimodal Surface Matching (MSM) method, for cortical surface registration of cortical surfaces, by improving control over the smoothness of the deformation.Enhances alignment of multimodal features, including the feature set used for the Human Connectome Projects parcellation of the human cerebral cortex.Also allows statistical modelling of longitudinal patterns of cortical growth.

Collaboration


Dive into the Antonios Makropoulos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge