Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nora Tusor is active.

Publication


Featured researches published by Nora Tusor.


The New England Journal of Medicine | 2014

Effects of Hypothermia for Perinatal Asphyxia on Childhood Outcomes

Denis Azzopardi; Brenda Strohm; Neil Marlow; Peter Brocklehurst; Aniko Deierl; Oya Eddama; Julia Goodwin; Henry L. Halliday; Edmund Juszczak; Olga Kapellou; Malcolm Levene; Louise Linsell; Omar Omar; Marianne Thoresen; Nora Tusor; Andrew Whitelaw; A. David Edwards; Abstr Act

BACKGROUND In the Total Body Hypothermia for Neonatal Encephalopathy Trial (TOBY), newborns with asphyxial encephalopathy who received hypothermic therapy had improved neurologic outcomes at 18 months of age, but it is uncertain whether such therapy results in longer-term neurocognitive benefits. METHODS We randomly assigned 325 newborns with asphyxial encephalopathy who were born at a gestational age of 36 weeks or more to receive standard care alone (control) or standard care with hypothermia to a rectal temperature of 33 to 34°C for 72 hours within 6 hours after birth. We evaluated the neurocognitive function of these children at 6 to 7 years of age. The primary outcome of this analysis was the frequency of survival with an IQ score of 85 or higher. RESULTS A total of 75 of 145 children (52%) in the hypothermia group versus 52 of 132 (39%) in the control group survived with an IQ score of 85 or more (relative risk, 1.31; P=0.04). The proportions of children who died were similar in the hypothermia group and the control group (29% and 30%, respectively). More children in the hypothermia group than in the control group survived without neurologic abnormalities (65 of 145 [45%] vs. 37 of 132 [28%]; relative risk, 1.60; 95% confidence interval, 1.15 to 2.22). Among survivors, children in the hypothermia group, as compared with those in the control group, had significant reductions in the risk of cerebral palsy (21% vs. 36%, P=0.03) and the risk of moderate or severe disability (22% vs. 37%, P=0.03); they also had significantly better motor-function scores. There was no significant between-group difference in parental assessments of childrens health status and in results on 10 of 11 psychometric tests. CONCLUSIONS Moderate hypothermia after perinatal asphyxia resulted in improved neurocognitive outcomes in middle childhood. (Funded by the United Kingdom Medical Research Council and others; TOBY ClinicalTrials.gov number, NCT01092637.).


Proceedings of the National Academy of Sciences of the United States of America | 2014

Rich-club organization of the newborn human brain

Gareth Ball; Paul Aljabar; Sally Zebari; Nora Tusor; Tomoki Arichi; Nazakat Merchant; Emma C. Robinson; Enitan Ogundipe; Daniel Rueckert; A. David Edwards; Serena J. Counsell

Significance To investigate the organizational principles of human brain development, we analyzed cerebral structural connectivity in the period leading up to the time of normal birth. We found that a “rich club” of interconnected cortical hubs previously reported in adults is present by 30 wk gestation. From mid to late gestation, connections between core hubs and the rest of the brain increased significantly. To determine the influence of environmental factors on network development, we also compared term-born infants to those born prematurely. Alterations in cortical–subcortical connectivity and short-distance connections outside the core network were associated with prematurity. Rich-club organization in the human brain precedes the emergence of complex neurological function, and alterations during this time may impact negatively on subsequent neurodevelopment. Combining diffusion magnetic resonance imaging and network analysis in the adult human brain has identified a set of highly connected cortical hubs that form a “rich club”—a high-cost, high-capacity backbone thought to enable efficient network communication. Rich-club architecture appears to be a persistent feature of the mature mammalian brain, but it is not known when this structure emerges during human development. In this longitudinal study we chart the emergence of structural organization in mid to late gestation. We demonstrate that a rich club of interconnected cortical hubs is already present by 30 wk gestation. Subsequently, until the time of normal birth, the principal development is a proliferation of connections between core hubs and the rest of the brain. We also consider the impact of environmental factors on early network development, and compare term-born neonates to preterm infants at term-equivalent age. Though rich-club organization remains intact following premature birth, we reveal significant disruptions in both in cortical–subcortical connectivity and short-distance corticocortical connections. Rich club organization is present well before the normal time of birth and may provide the fundamental structural architecture for the subsequent emergence of complex neurological functions. Premature exposure to the extrauterine environment is associated with altered network architecture and reduced network capacity, which may in part account for the high prevalence of cognitive problems in preterm infants.


NeuroImage | 2012

Development of BOLD signal hemodynamic responses in the human brain

Tomoki Arichi; Gianlorenzo Fagiolo; Marta Varela; Alejandro Melendez-Calderon; Alessandro Allievi; Nazakat Merchant; Nora Tusor; Serena J. Counsell; Etienne Burdet; Christian F. Beckmann; A. David Edwards

In the rodent brain the hemodynamic response to a brief external stimulus changes significantly during development. Analogous changes in human infants would complicate the determination and use of the hemodynamic response function (HRF) for functional magnetic resonance imaging (fMRI) in developing populations. We aimed to characterize HRF in human infants before and after the normal time of birth using rapid sampling of the Blood Oxygen Level Dependent (BOLD) signal. A somatosensory stimulus and an event related experimental design were used to collect data from 10 healthy adults, 15 sedated infants at term corrected post menstrual age (PMA) (median 41 + 1 weeks), and 10 preterm infants (median PMA 34 + 4 weeks). A positive amplitude HRF waveform was identified across all subject groups, with a systematic maturational trend in terms of decreasing time-to-peak and increasing positive peak amplitude associated with increasing age. Application of the age-appropriate HRF models to fMRI data significantly improved the precision of the fMRI analysis. These findings support the notion of a structured development in the brains response to stimuli across the last trimester of gestation and beyond.


Cerebral Cortex | 2015

Thalamocortical Connectivity Predicts Cognition in Children Born Preterm

Gareth Ball; Libuse Pazderova; Andrew Chew; Nora Tusor; Nazakat Merchant; Tomoki Arichi; Joanna M. Allsop; Frances Cowan; A. David Edwards; Serena J. Counsell

Thalamocortical connections are: essential for brain function, established early in development, and significantly impaired following preterm birth. Impaired cognitive abilities in preterm infants may be related to disruptions in thalamocortical connectivity. The aim of this study was to test the hypothesis: thalamocortical connectivity in the preterm brain at term-equivalent is correlated with cognitive performance in early childhood. We examined 57 infants who were born <35 weeks gestational age (GA) and had no evidence of focal abnormality on magnetic resonance imaging (MRI). Infants underwent diffusion MRI at term and cognitive performance at 2 years was assessed using the Bayley III scales of Infant and Toddler development. Cognitive scores at 2 years were correlated with structural connectivity between the thalamus and extensive cortical regions at term. Mean thalamocortical connectivity across the whole cortex explained 11% of the variance in cognitive scores at 2 years. The inclusion of GA at birth and parental socioeconomic group in the model explained 30% of the variance in subsequent cognitive performance. Identifying impairments in thalamocortical connectivity as early as term equivalent can help identify those infants at risk of subsequent cognitive delay and may be useful to assess efficacy of potential treatments at an early age.


Lancet Neurology | 2016

Moderate hypothermia within 6 h of birth plus inhaled xenon versus moderate hypothermia alone after birth asphyxia (TOBY-Xe): a proof-of-concept, open-label, randomised controlled trial

Denis Azzopardi; Nicola J. Robertson; A Bainbridge; E Cady; Geoffrey Charles-Edwards; Aniko Deierl; Gianlorenzo Fagiolo; Nicholas P. Franks; James Griffiths; Jo Hajnal; Edmund Juszczak; Basil Kapetanakis; Louise Linsell; Mervyn Maze; Omar Omar; Brenda Strohm; Nora Tusor; David Edwards

Summary Background Moderate cooling after birth asphyxia is associated with substantial reductions in death and disability, but additional therapies might provide further benefit. We assessed whether the addition of xenon gas, a promising novel therapy, after the initiation of hypothermia for birth asphyxia would result in further improvement. Methods Total Body hypothermia plus Xenon (TOBY-Xe) was a proof-of-concept, randomised, open-label, parallel-group trial done at four intensive-care neonatal units in the UK. Eligible infants were 36–43 weeks of gestational age, had signs of moderate to severe encephalopathy and moderately or severely abnormal background activity for at least 30 min or seizures as shown by amplitude-integrated EEG (aEEG), and had one of the following: Apgar score of 5 or less 10 min after birth, continued need for resuscitation 10 min after birth, or acidosis within 1 h of birth. Participants were allocated in a 1:1 ratio by use of a secure web-based computer-generated randomisation sequence within 12 h of birth to cooling to a rectal temperature of 33·5°C for 72 h (standard treatment) or to cooling in combination with 30% inhaled xenon for 24 h started immediately after randomisation. The primary outcomes were reduction in lactate to N-acetyl aspartate ratio in the thalamus and in preserved fractional anisotropy in the posterior limb of the internal capsule, measured with magnetic resonance spectroscopy and MRI, respectively, within 15 days of birth. The investigator assessing these outcomes was masked to allocation. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00934700, and with ISRCTN, as ISRCTN08886155. Findings The study was done from Jan 31, 2012, to Sept 30, 2014. We enrolled 92 infants, 46 of whom were randomly assigned to cooling only and 46 to xenon plus cooling. 37 infants in the cooling only group and 41 in the cooling plus xenon group underwent magnetic resonance assessments and were included in the analysis of the primary outcomes. We noted no significant differences in lactate to N-acetyl aspartate ratio in the thalamus (geometric mean ratio 1·09, 95% CI 0·90 to 1·32) or fractional anisotropy (mean difference −0·01, 95% CI −0·03 to 0·02) in the posterior limb of the internal capsule between the two groups. Nine infants died in the cooling group and 11 in the xenon group. Two adverse events were reported in the xenon group: subcutaneous fat necrosis and transient desaturation during the MRI. No serious adverse events were recorded. Interpretation Administration of xenon within the delayed timeframe used in this trial is feasible and apparently safe, but is unlikely to enhance the neuroprotective effect of cooling after birth asphyxia. Funding UK Medical Research Council.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Specialization and integration of functional thalamocortical connectivity in the human infant

Hilary Toulmin; Christian F. Beckmann; Jonathan O'Muircheartaigh; Gareth Ball; Pumza Nongena; Antonios Makropoulos; Ashraf Ederies; Serena J. Counsell; Nigel Kennea; Tomoki Arichi; Nora Tusor; Mary A. Rutherford; Denis Azzopardi; Nuria Gonzalez-Cinca; Joseph V. Hajnal; A. David Edwards

Significance We investigated the way in which the human thalamus and cortex are functionally connected at the time of normal birth. We found the functional parcellation of the thalamus to be a good facsimile of that found in adult studies. However, although primary cortical regions were almost entirely connected to specific thalamic regions, heteromodal cortex was more widely connected to multiple thalamic regions, giving the potential for an integrative role for these circuits. Development seemed to have been modulated by the experience of premature extrauterine life, with an increase in connectivity to primary sensory cortex, but reduced connectivity between areas of the thalamus and heteromodal cortex known to support higher cognitive functions. Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions.


NeuroImage | 2016

Regional growth and atlasing of the developing human brain.

Antonios Makropoulos; Paul Aljabar; Robert Wright; Britta Hüning; Nazakat Merchant; Tomoki Arichi; Nora Tusor; Joseph V. Hajnal; A. David Edwards; Serena J. Counsell; Daniel Rueckert

Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45 weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area.


Pediatric Research | 2012

Prediction of neurodevelopmental outcome after hypoxic–ischemic encephalopathy treated with hypothermia by diffusion tensor imaging analyzed using tract-based spatial statistics

Nora Tusor; Courtney J. Wusthoff; Natalie Smee; Nazakat Merchant; Tomoki Arichi; Joanna M. Allsop; Frances Cowan; Denis Azzopardi; A. David Edwards; Serena J. Counsell

Introduction:Objective biomarkers are needed to assess neuroprotective therapies after perinatal hypoxic–ischemic encephalopathy (HIE). We tested the hypothesis that, in infants who underwent therapeutic hypothermia after perinatal HIE, neurodevelopmental performance was predicted by fractional anisotropy (FA) values in the white matter (WM) on early diffusion tensor imaging (DTI) as assessed by means of tract-based spatial statistics (TBSS).Methods:We studied 43 term infants with HIE. Developmental assessments were carried out at a median (range) age of 24 (12–28) mo.Results:As compared with infants with favorable outcomes, those with unfavorable outcomes had significantly lower FA values (P < 0.05) in the centrum semiovale, corpus callosum (CC), anterior and posterior limbs of the internal capsule, external capsules, fornix, cingulum, cerebral peduncles, optic radiations, and inferior longitudinal fasciculus. In a second analysis in 32 assessable infants, the Griffiths Mental Development Scales (Revised) (GMDS-R) showed a significant linear correlation (P < 0.05) between FA values and developmental quotient (DQ) and all its component subscale scores.Discussion:DTI analyzed by TBSS provides a qualified biomarker that can be used to assess the efficacy of additional neuroprotective therapies after HIE.


NeuroImage | 2017

Early development of structural networks and the impact of prematurity on brain connectivity

Dafnis Batalle; Emer Hughes; Hui Zhang; J. Donald Tournier; Nora Tusor; Paul Aljabar; Luqman Wali; Daniel C. Alexander; Joseph V. Hajnal; Chiara Nosarti; A. David Edwards; Serena J. Counsell

ABSTRACT Preterm infants are at high risk of neurodevelopmental impairment, which may be due to altered development of brain connectivity. We aimed to (i) assess structural brain development from 25 to 45 weeks gestational age (GA) using graph theoretical approaches and (ii) test the hypothesis that preterm birth results in altered white matter network topology. Sixty‐five infants underwent MRI between 25+3 and 45+6 weeks GA. Structural networks were constructed using constrained spherical deconvolution tractography and were weighted by measures of white matter microstructure (fractional anisotropy, neurite density and orientation dispersion index). We observed regional differences in brain maturation, with connections to and from deep grey matter showing most rapid developmental changes during this period. Intra‐frontal, frontal to cingulate, frontal to caudate and inter‐hemispheric connections matured more slowly. We demonstrated a core of key connections that was not affected by GA at birth. However, local connectivity involving thalamus, cerebellum, superior frontal lobe, cingulate gyrus and short range cortico‐cortical connections was related to the degree of prematurity and contributed to altered global topology of the structural brain network. The relative preservation of core connections at the expense of local connections may support more effective use of impaired white matter reserve following preterm birth. Graphical abstract Figure. No Caption available. HighlightsFirst characterisation of preterm brain networks weighted by microstructural features.Preterm brain is resistant to disruptions in development of core connections.Peripheral connections associated with cognition and behaviour are more vulnerable.


Magnetic Resonance in Medicine | 2017

A dedicated neonatal brain imaging system

Emer Hughes; Tobias Winchman; Francesco Padormo; Rui Pedro Azeredo Gomes Teixeira; Julia Wurie; Maryanne Sharma; Matthew Fox; Jana Hutter; Lucilio Cordero-Grande; Anthony N. Price; Joanna M. Allsop; Jose Bueno-Conde; Nora Tusor; Tomoki Arichi; Alexander D. Edwards; Mary A. Rutherford; Serena J. Counsell; Joseph V. Hajnal

The goal of the Developing Human Connectome Project is to acquire MRI in 1000 neonates to create a dynamic map of human brain connectivity during early development. High‐quality imaging in this cohort without sedation presents a number of technical and practical challenges.

Collaboration


Dive into the Nora Tusor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge