Antonius T. J. van Helvoort
Norwegian University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonius T. J. van Helvoort.
Nano Letters | 2012
A. Mazid Munshi; D L Dheeraj; Vidar T. Fauske; Dong Chul Kim; Antonius T. J. van Helvoort; Bjørn-Ove Fimland; H. Weman
By utilizing the reduced contact area of nanowires, we show that epitaxial growth of a broad range of semiconductors on graphene can in principle be achieved. A generic atomic model is presented which describes the epitaxial growth configurations applicable to all conventional semiconductor materials. The model is experimentally verified by demonstrating the growth of vertically aligned GaAs nanowires on graphite and few-layer graphene by the self-catalyzed vapor-liquid-solid technique using molecular beam epitaxy. A two-temperature growth strategy was used to increase the nanowire density. Due to the self-catalyzed growth technique used, the nanowires were found to have a regular hexagonal cross-sectional shape, and are uniform in length and diameter. Electron microscopy studies reveal an epitaxial relationship of the grown nanowires with the underlying graphitic substrates. Two relative orientations of the nanowire side-facets were observed, which is well explained by the proposed atomic model. A prototype of a single GaAs nanowire photodetector demonstrates a high-quality material. With GaAs being a model system, as well as a very useful material for various optoelectronic applications, we anticipate this particular GaAs nanowire/graphene hybrid to be promising for flexible and low-cost solar cells.
Nano Letters | 2008
D L Dheeraj; G. Patriarche; Hailong Zhou; Thang B. Hoang; A F Moses; Sondre Grønsberg; Antonius T. J. van Helvoort; Bjørn-Ove Fimland; H. Weman
We have demonstrated the growth of a unique wurtzite (WZ) GaAs nanowire (NW) with a zinc blende (ZB) GaAsSb insert by Au-assisted molecular beam epitaxy. An abrupt interface from the WZ GaAs phase to the ZB GaAsSb phase was observed, whereas an intermediate segment of a 4H polytype GaAs phase was found directly above the ZB GaAsSb insert. A possible mechanism for the different phase transitions is discussed. Furthermore, low temperature microphotoluminescence (micro-PL) measurements showed evidence of quantum confinement of holes in the GaAsSb insert.
Nano Letters | 2012
L. Ahtapodov; J Todorovic; Phillip Olk; Terje Mjåland; Patrick Slåttnes; D L Dheeraj; Antonius T. J. van Helvoort; Bjørn-Ove Fimland; H. Weman
The optical properties of the wurtzite (WZ) GaAs crystal phase found in nanowires (NWs) are a highly controversial topic. Here, we study high-quality pure WZ GaAs/AlGaAs core-shell NWs grown by Au-assisted molecular beam epitaxy (MBE) with microphotoluminescence spectroscopy (μ-PL) and (scanning) transmission electron microscopy on the very same single wire. We determine the room temperature (294 K) WZ GaAs bandgap to be 1.444 eV, which is ∼20 meV larger than in zinc blende (ZB) GaAs, and show that the free exciton emission at 15 K is at 1.516 eV. On the basis of time- and temperature-resolved μ-PL results, we propose a Γ(8) conduction band symmetry in WZ GaAs. We suggest a method for quantifying the optical quality of NWs, taking into consideration the difference between the room and low temperature integrated PL intensity, and demonstrate that Au-assisted GaAs/AlGaAs core-shell NWs can have high PL brightness up to room temperature.
Nano Letters | 2014
Lewys Jones; Katherine E. MacArthur; Vidar Tonaas Fauske; Antonius T. J. van Helvoort; Peter D. Nellist
Heterogeneous nanoparticle catalyst development relies on an understanding of their structure-property relationships, ideally at atomic resolution and in three-dimensions. Current transmission electron microscopy techniques such as discrete tomography can provide this but require multiple images of each nanoparticle and are incompatible with samples that change under electron irradiation or with surveying large numbers of particles to gain significant statistics. Here, we make use of recent advances in quantitative dark-field scanning transmission electron microscopy to count the number atoms in each atomic column of a single image from a platinum nanoparticle. These atom-counts, along with the prior knowledge of the face-centered cubic geometry, are used to create atomistic models. An energy minimization is then used to relax the nanoparticles 3D structure. This rapid approach enables high-throughput statistical studies or the analysis of dynamic processes such as facet-restructuring or particle damage.
Inorganic Chemistry | 2008
Per Martin Rørvik; Tone Lyngdal; Ragnhild Sæterli; Antonius T. J. van Helvoort; Randi Holmestad; Tor Grande; Mari-Ann Einarsrud
A molten salt synthesis route, previously reported to yield BaTiO3, PbTiO3, and Na2Ti6O13 nanorods, has been re-examined to elucidate the role of volatile chlorides. A precursor mixture containing barium (or lead) and titanium was annealed in the presence of NaCl at 760 or 820 degrees C. The main products were respectively isometric nanocrystalline BaTiO3 and PbTiO3. Nanorods were also detected, but electron diffraction revealed that the composition of the nanorods was respectively BaTi2O5/BaTi5O11 and Na2Ti6O13 for the two different systems, in contradiction to the previous studies. It was shown that NaCl reacted with BaO (PbO) resulting in loss of volatile BaCl2 (PbCl2) and formation and preferential growth of titanium oxide-rich nanorods instead of the target phase BaTiO3 (or PbTiO3). The molten salt synthesis route may therefore not necessarily yield nanorods of the target ternary oxide as reported previously. In addition, the importance of NaCl(g) for the growth of nanorods below the melting point of NaCl was demonstrated in a special experimental setup, where NaCl and the precursors were physically separated.
Nano Letters | 2010
Thang B. Hoang; A F Moses; L. Ahtapodov; Hailong Zhou; D L Dheeraj; Antonius T. J. van Helvoort; Bjørn-Ove Fimland; H. Weman
We report on a crystal phase-dependent photoluminescence (PL) polarization effect in individual wurtzite GaAs nanowires with a zinc blende GaAsSb insert grown by Au-assisted molecular beam epitaxy. The PL emission from the zinc blende GaAsSb insert is strongly polarized along the nanowire axis while the emission from the wurtzite GaAs nanowire is perpendicularly polarized. The results indicate that the crystal phases, through optical selection rules, are playing an important role in the alignment of the PL polarization in nanowires besides the linear polarization induced by the dielectric mismatch. The strong excitation power dependence and long recombination lifetimes ( approximately 4 ns) from the wurtzite GaAs and zinc blende GaAsSb-related PL emission strongly indicate the existence of type II band alignments in the nanowire due to the presence of nanometer thin zinc blende segments and stacking faults in the wurtzite GaAs barrier.
Nanotechnology | 2008
Per Martin Rørvik; Åsmund Almli; Antonius T. J. van Helvoort; Randi Holmestad; Thomas Tybell; Tor Grande; Mari-Ann Einarsrud
Arrays of ferroelectric lead titanate (PbTiO(3)) nanorods have been grown on a substrate by a novel template-free method. Hydrothermal treatment of an amorphous PbTiO(3) precursor in the presence of a surfactant and PbTiO(3) or SrTiO(3) substrates resulted in the growth of PbTiO(3) nanorod arrays aligned perpendicular to the substrate surface. Two steps in the growth mechanism were demonstrated: first an epitaxial layer was formed on the substrate; this was followed by self-assembly of nanocrystals forming a mesocrystal layer which matured into arrays of PbTiO(3) nanorods.
Journal of Electron Microscopy | 2008
Espen Eberg; A. F. Monsen; Thomas Tybell; Antonius T. J. van Helvoort; Randi Holmestad
In this article, the effects of the transmission electron microscopy (TEM) specimen preparation techniques, such as ion milling and tripod polishing on perovskite oxides for high-resolution TEM investigation, are compared. Conventional and liquid nitrogen cooled ion milling induce a new domain orientation in thin films of SrRuO(3) and LaFeO(3) grown on (001)-oriented SrTiO(3) substrates. This is not observed in tripod-polished specimens. Different ion milling rates for thin films and substrates in cross-section specimens lead to artefacts in the interface region, degrading the specimen quality. This is illustrated by SrRuO(3) and PbTiO(3) thin films grown on (001)-oriented SrTiO(3). By applying tripod polishing and gentle low-angle, low-energy ion milling while cooling the sample, the effects from specimen preparation are reduced resulting in higher quality of the TEM study. In the process of making face-to-face cross-section specimens by tripod polishing, it is crucial that the glue layer attaching the slabs of material is very thin (<50 nm).
Nano Letters | 2016
Martin Heilmann; A. Mazid Munshi; George Sarau; Manuela Göbelt; C. Tessarek; Vidar Tonaas Fauske; Antonius T. J. van Helvoort; Jianfeng Yang; Michael Latzel; Björn Hoffmann; Gavin Conibeer; H. Weman; Silke Christiansen
The monolithic integration of wurtzite GaN on Si via metal-organic vapor phase epitaxy is strongly hampered by lattice and thermal mismatch as well as meltback etching. This study presents single-layer graphene as an atomically thin buffer layer for c-axis-oriented growth of vertically aligned GaN nanorods mediated by nanometer-sized AlGaN nucleation islands. Nanostructures of similar morphology are demonstrated on graphene-covered Si(111) as well as Si(100). High crystal and optical quality of the nanorods are evidenced through scanning transmission electron microscopy, micro-Raman, and cathodoluminescence measurements supported by finite-difference time-domain simulations. Current-voltage characteristics revealed high vertical conduction of the as-grown GaN nanorods through the Si substrates. These findings are substantial to advance the integration of GaN-based devices on any substrates of choice that sustains the GaN growth temperatures, thereby permitting novel designs of GaN-based heterojunction device concepts.
Nano Letters | 2015
Junghwan Huh; Hoyeol Yun; Dong Chul Kim; A. Mazid Munshi; D L Dheeraj; Hanne Kauko; Antonius T. J. van Helvoort; Sangwook Lee; Bjørn-Ove Fimland; H. Weman
Device configurations that enable a unidirectional propagation of carriers in a semiconductor are fundamental components for electronic and optoelectronic applications. To realize such devices, however, it is generally required to have complex processes to make p-n or Schottky junctions. Here we report on a unidirectional propagation effect due to a self-induced compositional variation in GaAsSb nanowires (NWs). The individual GaAsSb NWs exhibit a highly reproducible rectifying behavior, where the rectifying direction is determined by the NW growth direction. Combining the results from confocal micro-Raman spectroscopy, electron microscopy, and electrical measurements, the origin of the rectifying behavior is found to be associated with a self-induced variation of the Sb and the carrier concentrations in the NW. To demonstrate the usefulness of these GaAsSb NWs for device applications, NW-based photodetectors and logic circuits have been made.