Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anu Koivula is active.

Publication


Featured researches published by Anu Koivula.


Science | 2011

Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface.

Kiyohiko Igarashi; Takayuki Uchihashi; Anu Koivula; Masahisa Wada; Satoshi Kimura; Tetsuaki Okamoto; Merja Penttilä; Toshio Ando; Masahiro Samejima

High-speed atomic force microscopy tracks single-molecule dynamics of cellulose degradation into fermentable sugar molecules. A deeper mechanistic understanding of the saccharification of cellulosic biomass could enhance the efficiency of biofuels development. We report here the real-time visualization of crystalline cellulose degradation by individual cellulase enzymes through use of an advanced version of high-speed atomic force microscopy. Trichoderma reesei cellobiohydrolase I (TrCel7A) molecules were observed to slide unidirectionally along the crystalline cellulose surface but at one point exhibited collective halting analogous to a traffic jam. Changing the crystalline polymorphic form of cellulose by means of an ammonia treatment increased the apparent number of accessible lanes on the crystalline surface and consequently the number of moving cellulase molecules. Treatment of this bulky crystalline cellulose simultaneously or separately with T. reesei cellobiohydrolase II (TrCel6A) resulted in a remarkable increase in the proportion of mobile enzyme molecules on the surface. Cellulose was completely degraded by the synergistic action between the two enzymes.


Nature Structural & Molecular Biology | 2002

Crystal Structure of a Laccase from Melanocarpus Albomyces with an Intact Trinuclear Copper Site

Nina Hakulinen; Laura-Leena Kiiskinen; Kristiina Kruus; Markku Saloheimo; Arja Paananen; Anu Koivula; Juha Rouvinen

We have crystallized the ascomycete laccase from Melanocarpus albomyces with all four coppers present and determined the crystal structure at 2.4 Å resolution. The enzyme is heavily glycosylated and consists of three cupredoxin-like domains, similar to those found in the Cu-depleted basidiomycete laccase from Coprinus cinereus. However, there are significant differences in the loops forming the substrate-binding pocket. In addition, the crystal structure of the M. albomyces laccase revealed elongated electron density between all three coppers in the trinuclear copper site, suggesting that an oxygen molecule binds with a novel geometry. This oxygen, required in the reaction, may enter the trinuclear site through the tunnel, which is open in the structure of the C. cinereus laccase. In contrast, the C-terminus on the M. albomyces laccase forms a plug that blocks this access.


Journal of Biological Chemistry | 2009

High Speed Atomic Force Microscopy Visualizes Processive Movement of Trichoderma reesei Cellobiohydrolase I on Crystalline Cellulose

Kiyohiko Igarashi; Anu Koivula; Masahisa Wada; Satoshi Kimura; Merja Penttilä; Masahiro Samejima

Fungal cellobiohydrolases act at liquid-solid interfaces. They have the ability to hydrolyze cellulose chains of a crystalline substrate because of their two-domain structure, i.e. cellulose-binding domain and catalytic domain, and unique active site architecture. However, the details of the action of the two domains on crystalline cellulose are still unclear. Here, we present real time observations of Trichoderma reesei (Tr) cellobiohydrolase I (Cel7A) molecules sliding on crystalline cellulose, obtained with a high speed atomic force microscope. The average velocity of the sliding movement on crystalline cellulose was 3.5 nm/s, and interestingly, the catalytic domain without the cellulose-binding domain moved with a velocity similar to that of the intact TrCel7A enzyme. However, no sliding of a catalytically inactive enzyme (mutant E212Q) or a variant lacking tryptophan at the entrance of the active site tunnel (mutant W40A) could be detected. This indicates that, besides the hydrolysis of glycosidic bonds, the loading of a cellulose chain into the active site tunnel is also essential for the enzyme movement.


Structure | 1999

Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from Trichoderma reesei

Jin-yu Zou; Gerard J. Kleywegt; Jerry Ståhlberg; Hugues Driguez; Wim Nerinckx; Marc Claeyssens; Anu Koivula; Tuula T. Teeri; T. Alwyn Jones

BACKGROUND Cel6A is one of the two cellobiohydrolases produced by Trichoderma reesei. The catalytic core has a structure that is a variation of the classic TIM barrel. The active site is located inside a tunnel, the roof of which is formed mainly by a pair of loops. RESULTS We describe three new ligand complexes. One is the structure of the wild-type enzyme in complex with a nonhydrolysable cello-oligosaccharide, methyl 4-S-beta-cellobiosyl-4-thio-beta-cellobioside (Glc)(2)-S-(Glc)(2), which differs from a cellotetraose in the nature of the central glycosidic linkage where a sulphur atom replaces an oxygen atom. The second structure is a mutant, Y169F, in complex with the same ligand, and the third is the wild-type enzyme in complex with m-iodobenzyl beta-D-glucopyranosyl-beta(1,4)-D-xylopyranoside (IBXG). CONCLUSIONS The (Glc)(2)-S-(Glc)(2) ligand binds in the -2 to +2 sites in both the wild-type and mutant enzymes. The glucosyl unit in the -1 site is distorted from the usual chair conformation in both structures. The IBXG ligand binds in the -2 to +1 sites, with the xylosyl unit in the -1 site where it adopts the energetically favourable chair conformation. The -1 site glucosyl of the (Glc)(2)-S-(Glc)(2) ligand is unable to take on this conformation because of steric clashes with the protein. The crystallographic results show that one of the tunnel-forming loops in Cel6A is sensitive to modifications at the active site, and is able to take on a number of different conformations. One of the conformational changes disrupts a set of interactions at the active site that we propose is an integral part of the reaction mechanism.


Journal of Molecular Biology | 2003

Engineering the Exo-loop of Trichoderma reesei Cellobiohydrolase, Cel7A. A comparison with Phanerochaete chrysosporium Cel7D

I. von Ossowski; Jerry Ståhlberg; Anu Koivula; Kathleen Piens; D. Becker; Harry Boer; R. Harle; M. Harris; Christina Divne; S. Mahdi; Yongxin Zhao; Hugues Driguez; Marc Claeyssens; Michael L. Sinnott; Tuula T. Teeri

The exo-loop of Trichoderma reesei cellobiohydrolase Cel7A forms the roof of the active site tunnel at the catalytic centre. Mutants were designed to study the role of this loop in crystalline cellulose degradation. A hydrogen bond to substrate made by a tyrosine at the tip of the loop was removed by the Y247F mutation. The mobility of the loop was reduced by introducing a new disulphide bridge in the mutant D241C/D249C. The tip of the loop was deleted in mutant Delta(G245-Y252). No major structural disturbances were observed in the mutant enzymes, nor was the thermostability of the enzyme affected by the mutations. The Y247F mutation caused a slight k(cat) reduction on 4-nitrophenyl lactoside, but only a small effect on cellulose hydrolysis. Deletion of the tip of the loop increased both k(cat) and K(M) and gave reduced product inhibition. Increased activity was observed on amorphous cellulose, while only half the original activity remained on crystalline cellulose. Stabilisation of the exo-loop by the disulphide bridge enhanced the activity on both amorphous and crystalline cellulose. The ratio Glc(2)/(Glc(3)+Glc(1)) released from cellulose, which is indicative of processive action, was highest with Tr Cel7A wild-type enzyme and smallest with the deletion mutant on both substrates. Based on these data it seems that the exo-loop of Tr Cel7A has evolved to facilitate processive crystalline cellulose degradation, which does not require significant conformational changes of this loop.


Biotechnology and Bioengineering | 2000

Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters

Harry Boer; Tuula T. Teeri; Anu Koivula

Heterologous expression of T. reesei cellobiohydrolase Cel7A in a methylotrophic yeast Pichia pastoris was tested both under the P. pastoris alcohol oxidase (AOX1) promoter and the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter in a fermentor. Production of Cel7A with the AOX1 promoter gave a better yield, although part of the enzyme expressed was apparently not correctly folded. Cel7A expressed in P. pastoris is overglycosylated at its N-glycosylation sites as compared to the native T. reesei protein, but less extensive than Cel7A expressed in Saccharomyces cerevisiae. The k(cat) and K(m) values for the purified protein on soluble substrates are similar to the values found for the native Trichoderma Cel7A, whereas the degradation rate on crystalline substrate (BMCC) is somewhat reduced. The measured pH optimum also closely resembles that of purified T. reesei Cel7A. Furthermore, the hyperglycosylation does not affect the thermostability of the enzyme monitored with tryptophane fluorescence and activity measurements. On the other hand, CD measurements indicate that the formation of disulfide bridges is an important step in the correct folding of Cel7A and might explain the difficulties encountered in heterologous expression of T. reesei Cel7A. The constitutive GAP promoter expression system of P. pastoris is nevertheless well suited for activity screening of cellulase activities in microtiter plates. With this type of screening method a faster selection of site-directed and random mutants with, for instance, an altered optimum pH is possible, in contrast to the homologous T. reesei expression system.


FEBS Letters | 1998

Tryptophan 272: an essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Cel6A

Anu Koivula; Tiina Kinnari; Vesa Harjunpää; Laura Ruohonen; Anita Teleman; Torbjörn Drakenberg; Juha Rouvinen; T. Alwyn Jones; Tuula T. Teeri

Trichoderma reesei cellobiohydrolase Cel6A (formerly CBHII) has a tunnel shaped active site with four internal subsites for the glucose units. We have predicted an additional ring stacking interaction for a sixth glucose moiety with a tryptophan residue (W272) found on the domain surface. Mutagenesis of this residue selectively impairs the enzyme function on crystalline cellulose but not on soluble or amorphous substrates. Our data shows that W272 forms an additional subsite at the entrance of the active site tunnel and suggests it has a specialised role in crystalline cellulose degradation, possibly in guiding a glucan chain into the tunnel.


Biotechnology for Biofuels | 2011

High level secretion of cellobiohydrolases by Saccharomyces cerevisiae

Marja Ilmen; Riaan den Haan; Elena E. Brevnova; John L. McBride; Erin Wiswall; Allan Froehlich; Anu Koivula; Sanni P. Voutilainen; Matti Siika-aho; Daniel C. la Grange; Naomi Thorngren; Simon Ahlgren; Mark Mellon; Kristen Deleault; Vineet Rajgarhia; Willem H. van Zyl; Merja Penttilä

BackgroundThe main technological impediment to widespread utilization of lignocellulose for the production of fuels and chemicals is the lack of low-cost technologies to overcome its recalcitrance. Organisms that hydrolyze lignocellulose and produce a valuable product such as ethanol at a high rate and titer could significantly reduce the costs of biomass conversion technologies, and will allow separate conversion steps to be combined in a consolidated bioprocess (CBP). Development of Saccharomyces cerevisiae for CBP requires the high level secretion of cellulases, particularly cellobiohydrolases.ResultsWe expressed various cellobiohydrolases to identify enzymes that were efficiently secreted by S. cerevisiae. For enhanced cellulose hydrolysis, we engineered bimodular derivatives of a well secreted enzyme that naturally lacks the carbohydrate-binding module, and constructed strains expressing combinations of cbh1 and cbh2 genes. Though there was significant variability in the enzyme levels produced, up to approximately 0.3 g/L CBH1 and approximately 1 g/L CBH2 could be produced in high cell density fermentations. Furthermore, we could show activation of the unfolded protein response as a result of cellobiohydrolase production. Finally, we report fermentation of microcrystalline cellulose (Avicel™) to ethanol by CBH-producing S. cerevisiae strains with the addition of beta-glucosidase.ConclusionsGene or protein specific features and compatibility with the host are important for efficient cellobiohydrolase secretion in yeast. The present work demonstrated that production of both CBH1 and CBH2 could be improved to levels where the barrier to CBH sufficiency in the hydrolysis of cellulose was overcome.


Protein Engineering Design & Selection | 2010

Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity

Sanni P. Voutilainen; Patrick G. Murray; Maria G. Tuohy; Anu Koivula

We report here a successful expression of a single-module GH-7 family cellobiohydrolase Cel7A from a thermophilic fungus Talaromyces emersonii (Te Cel7A) in Saccharomyces cerevisiae. The heterologous expression system allowed structure-guided protein engineering to improve the thermostability and activity of Te Cel7A. Altogether six different mutants aimed at introducing additional disulphide bridges to the catalytic module of Te Cel7A were designed. These included addition of five individual S-S bridges in or between the loops extending from the beta-sandwich fold, and located either near the active site tunnel or forming the tunnel in Te Cel7A. A triple mutant containing the three best S-S mutations was also engineered. Three out of five single S-S mutants all had clearly improved thermostability which was also reflected as improved Avicel hydrolysis efficiency at 75 degrees C. The best mutant was the triple mutant whose unfolding temperature was improved by 9 degrees C leading to efficient microcrystalline cellulose hydrolysis at 80 degrees C. All the additional S-S bonds contributed mainly to the thermostability of the Te Cel7A, but one of the mutants (N54C/P191C) also showed, somewhat surprisingly, improved activity even at room temperature.


Biotechnology and Bioengineering | 2008

Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases

Sanni P. Voutilainen; Terhi Puranen; Matti Siika-aho; Arja Lappalainen; Marika Alapuranen; Jarno Kallio; Satu Hooman; Liisa Viikari; Jari Vehmaanperä; Anu Koivula

As part of the effort to find better cellulases for bioethanol production processes, we were looking for novel GH‐7 family cellobiohydrolases, which would be particularly active on insoluble polymeric substrates and participate in the rate‐limiting step in the hydrolysis of cellulose. The enzymatic properties were studied and are reported here for family 7 cellobiohydrolases from the thermophilic fungi Acremonium thermophilum, Thermoascus aurantiacus, and Chaetomium thermophilum. The Trichoderma reesei Cel7A enzyme was used as a reference in the experiments. As the native T. aurantiacus Cel7A has no carbohydrate‐binding module (CBM), recombinant proteins having the CBM from either the C. thermophilum Cel7A or the T. reesei Cel7A were also constructed. All these novel acidic cellobiohydrolases were more thermostable (by 4–10°C) and more active (two‐ to fourfold) in hydrolysis of microcrystalline cellulose (Avicel) at 45°C than T. reesei Cel7A. The C. thermophilum Cel7A showed the highest specific activity and temperature optimum when measured on soluble substrates. The most effective enzyme for Avicel hydrolysis at 70°C, however, was the 2‐module version of the T. aurantiacus Cel7A, which was also relatively weakly inhibited by cellobiose. These results are discussed from the structural point of view based on the three‐dimensional homology models of these enzymes. Biotechnol. Bioeng. 2008;101: 515–528.

Collaboration


Dive into the Anu Koivula's collaboration.

Top Co-Authors

Avatar

Juha Rouvinen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Harry Boer

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Merja Penttilä

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Tuula T. Teeri

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Laura Ruohonen

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nina Hakulinen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Tarja Parkkinen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Tapani Reinikainen

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Anita Teleman

VTT Technical Research Centre of Finland

View shared research outputs
Researchain Logo
Decentralizing Knowledge