Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anukul T. Shenoy is active.

Publication


Featured researches published by Anukul T. Shenoy.


Infection and Immunity | 2016

Infiltrated Macrophages Die of Pneumolysin-Mediated Necroptosis following Pneumococcal Myocardial Invasion

Ryan P. Gilley; Norberto Gonzalez-Juarbe; Anukul T. Shenoy; Luis F. Reyes; Peter H. Dube; Marcos I. Restrepo; Carlos J. Orihuela

ABSTRACT Streptococcus pneumoniae (the pneumococcus) is capable of invading the heart. Herein we observed that pneumococcal invasion of the myocardium occurred soon after development of bacteremia and was continuous thereafter. Using immunofluorescence microscopy (IFM), we observed that S. pneumoniae replication within the heart preceded visual signs of tissue damage in cardiac tissue sections stained with hematoxylin and eosin. Different S. pneumoniae strains caused distinct cardiac pathologies: strain TIGR4, a serotype 4 isolate, caused discrete pneumococcus-filled microscopic lesions (microlesions), whereas strain D39, a serotype 2 isolate, was, in most instances, detectable only using IFM and was associated with foci of cardiomyocyte hydropic degeneration and immune cell infiltration. Both strains efficiently invaded the myocardium, but cardiac damage was entirely dependent on the pore-forming toxin pneumolysin only for D39. Early microlesions caused by TIGR4 and microlesions formed by a TIGR4 pneumolysin-deficient mutant were infiltrated with CD11b+ and Ly6G-positive neutrophils and CD11b+ and F4/80-positive (F4/80+) macrophages. We subsequently demonstrated that macrophages in TIGR4-infected hearts died as a result of pneumolysin-induced necroptosis. The effector of necroptosis, phosphorylated mixed-lineage kinase domain-like protein (MLKL), was detected in CD11b+ and F4/80+ cells associated with microlesions. Likewise, treatment of infected mice and THP-1 macrophages in vitro with the receptor-interacting protein 1 kinase (RIP1) inhibitor necrostatin-5 promoted the formation of purulent microlesions and blocked cell death, respectively. We conclude that pneumococci that have invaded the myocardium are an important cause of cardiac damage, pneumolysin contributes to cardiac damage in a bacterial strain-specific manner, and pneumolysin kills infiltrated macrophages via necroptosis, which alters the immune response.


PLOS ONE | 2016

A non-human primate model of severe pneumococcal pneumonia

Luis F. Reyes; Marcos I. Restrepo; Cecilia A. Hinojosa; Nilam J. Soni; Anukul T. Shenoy; Ryan P. Gilley; Norberto Gonzalez-Juarbe; Julio R. Noda; Vicki T. Winter; Melissa de la Garza; Robert E. Shade; Jacqueline J. Coalson; Luis D. Giavedoni; Antonio Anzueto; Carlos J. Orihuela

Rationale Streptococcus pneumoniae is the leading cause of community-acquired pneumonia and infectious death in adults worldwide. A non-human primate model is needed to study the molecular mechanisms that underlie the development of severe pneumonia, identify diagnostic tools, explore potential therapeutic targets, and test clinical interventions during pneumococcal pneumonia. Objective To develop a non-human primate model of pneumococcal pneumonia. Methods Seven adult baboons (Papio cynocephalus) were surgically tethered to a continuous monitoring system that recorded heart rate, temperature, and electrocardiography. Animals were inoculated with 109 colony-forming units of S. pneumoniae using bronchoscopy. Three baboons were rescued with intravenous ampicillin therapy. Pneumonia was diagnosed using lung ultrasonography and ex vivo confirmation by histopathology and immunodetection of pneumococcal capsule. Organ failure, using serum biomarkers and quantification of bacteremia, was assessed daily. Results Challenged animals developed signs and symptoms of pneumonia 4 days after infection. Infection was characterized by the presence of cough, tachypnea, dyspnea, tachycardia and fever. All animals developed leukocytosis and bacteremia 24 hours after infection. A severe inflammatory reaction was detected by elevation of serum cytokines, including Interleukin (IL)1Ra, IL-6, and IL-8, after infection. Lung ultrasonography precisely detected the lobes with pneumonia that were later confirmed by pathological analysis. Lung pathology positively correlated with disease severity. Antimicrobial therapy rapidly reversed symptomology and reduced serum cytokines. Conclusions We have developed a novel animal model for severe pneumococcal pneumonia that mimics the clinical presentation, inflammatory response, and infection kinetics seen in humans. This is a novel model to test vaccines and treatments, measure biomarkers to diagnose pneumonia, and predict outcomes.


Infection and Immunity | 2016

Neuraminidase A exposed galactose promotes Streptococcus pneumoniae biofilm formation during colonization.

Krystle Blanchette; Anukul T. Shenoy; Jeffrey D. Milner; Ryan P. Gilley; Erin E. McClure; Cecilia A. Hinojosa; Nikhil Kumar; Sean C. Daugherty; Luke J. Tallon; Sandra Ott; Samantha J. King; Daniela M. Ferreira; Stephen B. Gordon; Hervé Tettelin; Carlos J. Orihuela

ABSTRACT Streptococcus pneumoniae is an opportunistic pathogen that colonizes the nasopharynx. Herein we show that carbon availability is distinct between the nasopharynx and bloodstream of adult humans: glucose is absent from the nasopharynx, whereas galactose is abundant. We demonstrate that pneumococcal neuraminidase A (NanA), which cleaves terminal sialic acid residues from host glycoproteins, exposed galactose on the surface of septal epithelial cells, thereby increasing its availability during colonization. We observed that S. pneumoniae mutants deficient in NanA and β-galactosidase A (BgaA) failed to form biofilms in vivo despite normal biofilm-forming abilities in vitro. Subsequently, we observed that glucose, sucrose, and fructose were inhibitory for biofilm formation, whereas galactose, lactose, and low concentrations of sialic acid were permissive. Together these findings suggested that the genes involved in biofilm formation were under some form of carbon catabolite repression (CCR), a regulatory network in which genes involved in the uptake and metabolism of less-preferred sugars are silenced during growth with preferred sugars. Supporting this notion, we observed that a mutant deficient in pyruvate oxidase, which converts pyruvate to acetyl-phosphate under non-CCR-inducing growth conditions, was unable to form biofilms. Subsequent comparative transcriptome sequencing (RNA-seq) analyses of planktonic and biofilm-grown pneumococci showed that metabolic pathways involving the conversion of pyruvate to acetyl-phosphate and subsequently leading to fatty acid biosynthesis were consistently upregulated during diverse biofilm growth conditions. We conclude that carbon availability in the nasopharynx impacts pneumococcal biofilm formation in vivo. Additionally, biofilm formation involves metabolic pathways not previously appreciated to play an important role.


Pneumonia (Nathan Qld.) | 2016

Anatomical site-specific contributions of pneumococcal virulence determinants

Anukul T. Shenoy; Carlos J. Orihuela

Streptococcus pneumoniae is an opportunistic pathogen globally associated with significant morbidity and mortality. It is capable of causing a wide range of diseases including sinusitis, conjunctivitis, otitis media, pneumonia, bacteraemia, sepsis, and meningitis. While its capsular polysaccharide is indispensible for invasive disease, and opsonising antibodies against the capsule are the basis for the current vaccines, a long history of biomedical research indicates that other components of this Gram-positive bacterium are also critical for virulence. Herein we review the contribution of pneumococcal virulence determinants to survival and persistence in the context of distinct anatomical sites. We discuss how these determinants allow the pneumococcus to evade mucociliary clearance during colonisation, establish lower respiratory tract infection, resist complement deposition and opsonophagocytosis in the bloodstream, and invade secondary tissues such as the central nervous system leading to meningitis. We do so in a manner that highlights both the critical role of the capsular polysaccharide and the accompanying and necessary protein determinants. Understanding the complex interplay between host and pathogen is necessary to find new ways to prevent pneumococcal infection. This review is an attempt to do so with consideration for the latest research findings.


Cell Death & Differentiation | 2017

Pore-forming toxin-mediated ion dysregulation leads to death receptor-independent necroptosis of lung epithelial cells during bacterial pneumonia

Norberto Gonzalez-Juarbe; Kelley M. Bradley; Anukul T. Shenoy; Ryan P. Gilley; Luis F. Reyes; Cecilia A. Hinojosa; Marcos I. Restrepo; Peter H. Dube; Molly A. Bergman; Carlos J. Orihuela

We report that pore-forming toxins (PFTs) induce respiratory epithelial cell necroptosis independently of death receptor signaling during bacterial pneumonia. Instead, necroptosis was activated as a result of ion dysregulation arising from membrane permeabilization. PFT-induced necroptosis required RIP1, RIP3 and MLKL, and could be induced in the absence or inhibition of TNFR1, TNFR2 and TLR4 signaling. We detected activated MLKL in the lungs from mice and nonhuman primates experiencing Serratia marcescens and Streptococcus pneumoniae pneumonia, respectively. We subsequently identified calcium influx and potassium efflux as the key initiating signals responsible for necroptosis; also that mitochondrial damage was not required for necroptosis activation but was exacerbated by MLKL activation. PFT-induced necroptosis in respiratory epithelial cells did not involve CamKII or reactive oxygen species. KO mice deficient in MLKL or RIP3 had increased survival and reduced pulmonary injury during S. marcescens pneumonia. Our results establish necroptosis as a major cell death pathway active during bacterial pneumonia and that necroptosis can occur without death receptor signaling.


PLOS Pathogens | 2017

Streptococcus pneumoniae in the heart subvert the host response through biofilm-mediated resident macrophage killing

Anukul T. Shenoy; Terry Brissac; Ryan P. Gilley; Nikhil Kumar; Yong Wang; Norberto Gonzalez-Juarbe; Whitney S. Hinkle; Sean C. Daugherty; Amol C. Shetty; Sandra Ott; Luke J. Tallon; Jessy Deshane; Hervé Tettelin; Carlos J. Orihuela

For over 130 years, invasive pneumococcal disease has been associated with the presence of extracellular planktonic pneumococci, i.e. diplococci or short chains in affected tissues. Herein, we show that Streptococcus pneumoniae that invade the myocardium instead replicate within cellular vesicles and transition into non-purulent biofilms. Pneumococci within mature cardiac microlesions exhibited salient biofilm features including intrinsic resistance to antibiotic killing and the presence of an extracellular matrix. Dual RNA-seq and subsequent principal component analyses of heart- and blood-isolated pneumococci confirmed the biofilm phenotype in vivo and revealed stark anatomical site-specific differences in virulence gene expression; the latter having major implications on future vaccine antigen selection. Our RNA-seq approach also identified three genomic islands as exclusively expressed in vivo. Deletion of one such island, Region of Diversity 12, resulted in a biofilm-deficient and highly inflammogenic phenotype within the heart; indicating a possible link between the biofilm phenotype and a dampened host-response. We subsequently determined that biofilm pneumococci released greater amounts of the toxin pneumolysin than did planktonic or RD12 deficient pneumococci. This allowed heart-invaded wildtype pneumococci to kill resident cardiac macrophages and subsequently subvert cytokine/chemokine production and neutrophil infiltration into the myocardium. This is the first report for pneumococcal biofilm formation in an invasive disease setting. We show that biofilm pneumococci actively suppress the host response through pneumolysin-mediated immune cell killing. As such, our findings contradict the emerging notion that biofilm pneumococci are passively immunoquiescent.


Microbes and Infection | 2017

Transcriptional organization of pneumococcal psrP-secY2A2 and impact of GtfA and GtfB deletion on PsrP-associated virulence properties

Anel Lizcano; Ramya Akula Suresh Babu; Anukul T. Shenoy; Alison Maren Saville; Nikhil Kumar; Adonis D'Mello; Cecilia A. Hinojosa; Ryan P. Gilley; Jesus A. Segovia; Timothy J. Mitchell; Hervé Tettelin; Carlos J. Orihuela

Pneumococcal serine-rich repeat protein (PsrP) is a glycoprotein that mediates Streptococcus pneumoniae attachment to lung cells and promotes biofilm formation. Herein, we investigated the transcriptional organization of psrP-secY2A2, the 37-kbp pathogenicity island encoding PsrP and its accessory genes. PCR amplification of cDNA and RNA-seq analysis found psrP-secY2A2 to be minimally composed of three operons: psrP-glyA, glyB, and glyC-asp5. Transcription of all three operons was greatest during biofilm growth and immunoblot analyses confirmed increased PsrP production by biofilm pneumococci. Using gas chromatography-mass spectrometry we identified monomeric N-acetylglucosamine as the primary glycoconjugate present on a recombinant intracellular version of PsrP, i.e. PsrP1-734. This finding was validated by immunoblot using lectins with known carbohydrate specificities. We subsequently deleted gtfA and gtfB, the GTFs thought to be responsible for addition of O-linked N-acetylglucosamine, and tested for PsrP and its associated virulence properties. These deletions negatively affected our ability to detect PsrP1-734 in bacterial whole cell lysates. Moreover, S. pneumoniae mutants lacking these genes pheno-copied the psrP mutant and were attenuated for: biofilm formation, adhesion to lung epithelial cells, and pneumonia in mice. Our studies identify the transcriptional organization of psrP-secY2A2 and show the indispensable role of GtfA and GtfB on PsrP-mediated pneumococcal virulence.


Infection and Immunity | 2017

Position of O-acetylation within the capsular repeat unit impacts the biological properties of pneumococcal serotypes 33A and 33F.

Brady L. Spencer; Jamil S. Saad; Anukul T. Shenoy; Carlos J. Orihuela; Moon H. Nahm

ABSTRACT Streptococcus pneumoniae (pneumococcus) produces many capsule types that differ in their abilities to evade host immune recognition. To explain these serotype-dependent protective capacities, many studies have investigated capsular thickness or the interaction of the capsule with complement proteins, but the effects of small chemical modifications of the capsule on its function have not been studied. One small chemical modification found frequently among pneumococcal capsules is O-acetylation. Pneumococcal serotype 33A has two membrane-bound O-acetyltransferase genes, wciG and wcjE. A 33A wcjE-deficient variant, 33F, occurs naturally and is increasing in prevalence in the wake of widespread conjugate vaccine use, but no wciG-deficient variants have been reported. To study the biological consequence of the loss of O-acetylation, we created wciG-deficient variants in both serotypes 33A and 33F, which we named 33X1 (ΔwciG) and 33X2 (ΔwciG ΔwcjE). Serotypes 33X1 and 33X2 express novel capsule types based on serological and biochemical analyses. We found that loss of WcjE-mediated O-acetylation appears not to affect cell wall shielding, since serotypes 33A and 33F exhibit comparable nonspecific opsonophagocytic killing, biofilm production, and adhesion to nasopharyngeal cells, though serotype 33F survived short-term drying better than serotype 33A. Loss of WciG-mediated O-acetylation in serotypes 33X1 and 33X2, however, resulted in a phenotype resembling that of nonencapsulated strains: increased cell wall accessibility, increased nonspecific opsonophagocytic killing, enhanced biofilm formation, and increased adhesion to nasopharyngeal cells. We conclude that WciG-mediated, but not WcjE-mediated, O-acetylation is important for producing protective capsules in 33A and that small chemical changes to the capsule can drastically affect its biological properties.


Annals of Clinical Microbiology and Antimicrobials | 2017

Killing of Serratia marcescens biofilms with chloramphenicol.

Christopher Ray; Anukul T. Shenoy; Carlos J. Orihuela; Norberto Gonzalez-Juarbe

Serratia marcescens is a Gram-negative bacterium with proven resistance to multiple antibiotics and causative of catheter-associated infections. Bacterial colonization of catheters mainly involves the formation of biofilm. The objectives of this study were to explore the susceptibility of S. marcescens biofilms to high doses of common antibiotics and non-antimicrobial agents. Biofilms formed by a clinical isolate of S. marcescens were treated with ceftriaxone, kanamycin, gentamicin, and chloramphenicol at doses corresponding to 10, 100 and 1000 times their planktonic minimum inhibitory concentration. In addition, biofilms were also treated with chemical compounds such as polysorbate-80 and ursolic acid. S. marcescens demonstrated susceptibility to ceftriaxone, kanamycin, gentamicin, and chloramphenicol in its planktonic form, however, only chloramphenicol reduced both biofilm biomass and biofilm viability. Polysorbate-80 and ursolic acid had minimal to no effect on either planktonic and biofilm grown S. marcescens. Our results suggest that supratherapeutic doses of chloramphenicol can be used effectively against established S. marcescens biofilms.


Infection and Immunity | 2017

Cell Invasion and Pyruvate Oxidase-Derived H2O2 Are Critical for Streptococcus pneumoniae-Mediated Cardiomyocyte Killing

Terry Brissac; Anukul T. Shenoy; La Donna A. Patterson; Carlos J. Orihuela

ABSTRACT Streptococcus pneumoniae (the pneumococcus) is the leading cause of community-acquired pneumonia and is now recognized to be a direct contributor to adverse acute cardiac events. During invasive pneumococcal disease, S. pneumoniae can gain access to the myocardium, kill cardiomyocytes, and form bacterium-filled “microlesions” causing considerable acute and long-lasting cardiac damage. While the molecular mechanisms responsible for bacterial translocation into the heart have been elucidated, the initial interactions of heart-invaded S. pneumoniae with cardiomyocytes remain unclear. In this study, we used a model of low multiplicity of S. pneumoniae infection with HL-1 mouse cardiomyocytes to investigate these early events. Using adhesion/invasion assays and immunofluorescent and transmission electron microscopy, we showed that S. pneumoniae rapidly adhered to and invaded cardiomyocytes. What is more, pneumococci existed as intravacuolar bacteria or escaped into the cytoplasm. Pulse-chase assays with BrdU confirmed intracellular replication of pneumococci within HL-1 cells. Using endocytosis inhibitors, bacterial isogenic mutants, and neutralizing antibodies against host proteins recognized by S. pneumoniae adhesins, we showed that S. pneumoniae uptake by cardiomyocytes is not through the well-studied canonical interactions identified for vascular endothelial cells. Indeed, S. pneumoniae invasion of HL-1 cells occurred through clathrin-mediated endocytosis (CME) and independently of choline binding protein A (CbpA)/laminin receptor, CbpA/polymeric immunoglobulin receptor, or cell wall phosphorylcholine/platelet-activating factor receptor. Subsequently, we determined that pneumolysin and streptococcal pyruvate oxidase-derived H2O2 production were required for cardiomyocyte killing. Finally, we showed that this cytotoxicity could be abrogated using CME inhibitors or antioxidants, attesting to intracellular replication of S. pneumoniae as a key first step in pneumococcal pathogenesis within the heart.

Collaboration


Dive into the Anukul T. Shenoy's collaboration.

Top Co-Authors

Avatar

Carlos J. Orihuela

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Ryan P. Gilley

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Norberto Gonzalez-Juarbe

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Cecilia A. Hinojosa

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis F. Reyes

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Marcos I. Restrepo

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terry Brissac

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Brady L. Spencer

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge