Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anup K. Upadhyay is active.

Publication


Featured researches published by Anup K. Upadhyay.


Nature Neuroscience | 2011

5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging

Keith E. Szulwach; Xuekun Li; Yujing Li; Chun-Xiao Song; Hao Wu; Qing Dai; Hasan Irier; Anup K. Upadhyay; Marla Gearing; Allan I. Levey; Aparna Vasanthakumar; Lucy A. Godley; Qiang Chang; Xiaodong Cheng; Chuan He; Peng Jin

DNA methylation dynamics influence brain function and are altered in neurological disorders. 5-hydroxymethylcytosine (5-hmC), a DNA base that is derived from 5-methylcytosine, accounts for ∼40% of modified cytosine in the brain and has been implicated in DNA methylation–related plasticity. We mapped 5-hmC genome-wide in mouse hippocampus and cerebellum at three different ages, which allowed us to assess its stability and dynamic regulation during postnatal neurodevelopment through adulthood. We found developmentally programmed acquisition of 5-hmC in neuronal cells. Epigenomic localization of 5-hmC–regulated regions revealed stable and dynamically modified loci during neurodevelopment and aging. By profiling 5-hmC in human cerebellum, we found conserved genomic features of 5-hmC. Finally, we found that 5-hmC levels were inversely correlated with methyl-CpG–binding protein 2 dosage, a protein encoded by a gene in which mutations cause Rett syndrome. These data suggest that 5-hmC–mediated epigenetic modification is critical in neurodevelopment and diseases.


Nucleic Acids Research | 2012

Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation

Hideharu Hashimoto; Yiwei Liu; Anup K. Upadhyay; Yanqi Chang; Shelley B. Howerton; Paula M. Vertino; Xing Zhang; Xiaodong Cheng

Cytosine residues in mammalian DNA occur in at least three forms, cytosine (C), 5-methylcytosine (M; 5mC) and 5-hydroxymethylcytosine (H; 5hmC). During semi-conservative DNA replication, hemi-methylated (M/C) and hemi-hydroxymethylated (H/C) CpG dinucleotides are transiently generated, where only the parental strand is modified and the daughter strand contains native cytosine. Here, we explore the role of DNA methyltransferases (DNMT) and ten eleven translocation (Tet) proteins in perpetuating these states after replication, and the molecular basis of their recognition by methyl-CpG-binding domain (MBD) proteins. Using recombinant proteins and modified double-stranded deoxyoligonucleotides, we show that DNMT1 prefers a hemi-methylated (M/C) substrate (by a factor of >60) over hemi-hydroxymethylated (H/C) and unmodified (C/C) sites, whereas both DNMT3A and DNMT3B have approximately equal activity on all three substrates (C/C, M/C and H/C). Binding of MBD proteins to methylated DNA inhibited Tet1 activity, suggesting that MBD binding may also play a role in regulating the levels of 5hmC. All five MBD proteins generally have reduced binding affinity for 5hmC relative to 5mC in the fully modified context (H/M versus M/M), though their relative abilities to distinguish the two varied considerably. We further show that the deamination product of 5hmC could be excised by thymine DNA glycosylase and MBD4 glycosylases regardless of context.


Nature Structural & Molecular Biology | 2009

Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294

Yanqi Chang; Xing Zhang; John R. Horton; Anup K. Upadhyay; Jin Liu; James P. Snyder; Mark T. Bedford; Xiaodong Cheng

Histone lysine methylation is an important epigenetic mark that regulates gene expression and chromatin organization. G9a and G9a-like protein (GLP) are euchromatin-associated methyltransferases that repress transcription by methylating histone H3 Lys9. BIX-01294 was originally identified as a G9a inhibitor during a chemical library screen of small molecules and has previously been used in the generation of induced pluripotent stem cells. Here we present the crystal structure of the catalytic SET domain of GLP in complex with BIX-01294 and S-adenosyl-L-homocysteine. The inhibitor is bound in the substrate peptide groove at the location where the histone H3 residues N-terminal to the target lysine lie in the previously solved structure of the complex with histone peptide. The inhibitor resembles the bound conformation of histone H3 Lys4 to Arg8, and is positioned in place by residues specific for G9a and GLP through specific interactions.


Nature Structural & Molecular Biology | 2011

A methylation and phosphorylation switch between an adjacent lysine and serine determines human DNMT1 stability

Pierre Olivier Estève; Yanqi Chang; Mala Samaranayake; Anup K. Upadhyay; John R. Horton; George R. Feehery; Xiaodong Cheng; Sriharsa Pradhan

The protein lysine methyltransferase SET7 regulates DNA methyltransferase-1 (DNMT1) activity in mammalian cells by promoting degradation of DNMT1 and thus allows epigenetic changes via DNA demethylation. Here we reveal an interplay between monomethylation of DNMT1 Lys142 by SET7 and phosphorylation of DNMT1 Ser143 by AKT1 kinase. These two modifications are mutually exclusive, and structural analysis suggests that Ser143 phosphorylation interferes with Lys142 monomethylation. AKT1 kinase colocalizes and directly interacts with DNMT1 and phosphorylates Ser143. Phosphorylated DNMT1 peaks during DNA synthesis, before DNMT1 methylation. Depletion of AKT1 or overexpression of dominant-negative AKT1 increases methylated DNMT1, resulting in a decrease in DNMT1 abundance. In mammalian cells, phosphorylated DNMT1 is more stable than methylated DNMT1. These results reveal cross-talk on DNMT1, through modifications mediated by AKT1 and SET7, that affects cellular DNMT1 levels.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor

Jing Zhao; Yuhong Du; John R. Horton; Anup K. Upadhyay; Bin Lou; Yan Bai; Xing Zhang; Lupei Du; Minyong Li; Binghe Wang; Lixin Zhang; Joseph T. Barbieri; Fadlo R. Khuri; Xiaodong Cheng; Haian Fu

The 14-3-3 family of phosphoserine/threonine-recognition proteins engage multiple nodes in signaling networks that control diverse physiological and pathophysiological functions and have emerged as promising therapeutic targets for such diseases as cancer and neurodegenerative disorders. Thus, small molecule modulators of 14-3-3 are much needed agents for chemical biology investigations and therapeutic development. To analyze 14-3-3 function and modulate its activity, we conducted a chemical screen and identified 4-[(2Z)-2-[4-formyl-6-methyl-5-oxo-3-(phosphonatooxymethyl)pyridin-2-ylidene]hydrazinyl]benzoate as a 14-3-3 inhibitor, which we termed FOBISIN (FOurteen-three-three BInding Small molecule INhibitor) 101. FOBISIN101 effectively blocked the binding of 14-3-3 with Raf-1 and proline-rich AKT substrate, 40 kDa and neutralized the ability of 14-3-3 to activate exoenzyme S ADP-ribosyltransferase. To provide a mechanistic basis for 14-3-3 inhibition, the crystal structure of 14-3-3ζ in complex with FOBISIN101 was solved. Unexpectedly, the double bond linking the pyridoxal-phosphate and benzoate moieties was reduced by X-rays to create a covalent linkage of the pyridoxal-phosphate moiety to lysine 120 in the binding groove of 14-3-3, leading to persistent 14-3-3 inactivation. We suggest that FOBISIN101-like molecules could be developed as an entirely unique class of 14-3-3 inhibitors, which may serve as radiation-triggered therapeutic agents for the treatment of 14-3-3-mediated diseases, such as cancer.


Journal of Clinical Investigation | 2010

hNaa10p contributes to tumorigenesis by facilitating DNMT1-mediated tumor suppressor gene silencing

Chung Fan Lee; Derick S C Ou; Sung Bau Lee; Liang Hao Chang; Ruo Kai Lin; Ying Shiuan Li; Anup K. Upadhyay; Xiaodong Cheng; Yi Ching Wang; Han Shui Hsu; Michael Hsiao; Cheng-Wen Wu; Li-Jung Juan

Hypermethylation-mediated tumor suppressor gene silencing plays a crucial role in tumorigenesis. Understanding its underlying mechanism is essential for cancer treatment. Previous studies on human N-alpha-acetyltransferase 10, NatA catalytic subunit (hNaa10p; also known as human arrest-defective 1 [hARD1]), have generated conflicting results with regard to its role in tumorigenesis. Here we provide multiple lines of evidence indicating that it is oncogenic. We have shown that hNaa10p overexpression correlated with poor survival of human lung cancer patients. In vitro, enforced expression of hNaa10p was sufficient to cause cellular transformation, and siRNA-mediated depletion of hNaa10p impaired cancer cell proliferation in colony assays and xenograft studies. The oncogenic potential of hNaa10p depended on its interaction with DNA methyltransferase 1 (DNMT1). Mechanistically, hNaa10p positively regulated DNMT1 enzymatic activity by facilitating its binding to DNA in vitro and its recruitment to promoters of tumor suppressor genes, such as E-cadherin, in vivo. Consistent with this, interaction between hNaa10p and DNMT1 was required for E-cadherin silencing through promoter CpG methylation, and E-cadherin repression contributed to the oncogenic effects of hNaa10p. Together, our data not only establish hNaa10p as an oncoprotein, but also reveal that it contributes to oncogenesis through modulation of DNMT1 function.


Journal of Molecular Biology | 2012

An analog of BIX-01294 selectively inhibits a family of histone H3 lysine 9 Jumonji demethylases.

Anup K. Upadhyay; Dante Rotili; Ji Woong Han; Ruogu Hu; Yanqi Chang; Donatella Labella; Xing Zhang; Young-sup Yoon; Antonello Mai; Xiaodong Cheng

BIX-01294 and its analogs were originally identified and subsequently designed as potent inhibitors against histone H3 lysine 9 (H3K9) methyltransferases G9a and G9a-like protein. Here, we show that BIX-01294 and its analog E67 can also inhibit H3K9 Jumonji demethylase KIAA1718 with half-maximal inhibitory concentrations in low micromolar range. Crystallographic analysis of KIAA1718 Jumonji domain in complex with E67 indicated that the benzylated six-membered piperidine ring was disordered and exposed to solvent. Removing the moiety (generating compound E67-2) has no effect on the potency against KIAA1718 but, unexpectedly, lost inhibition against G9a-like protein by a factor of 1500. Furthermore, E67 and E67-2 have no effect on the activity against histone H3 lysine 4 (H3K4) demethylase JARID1C. Thus, our study provides a new avenue for designing and improving the potency and selectivity of inhibitors against H3K9 Jumonji demethylases over H3K9 methyltransferases and H3K4 demethylases.


Progress in drug research | 2011

Dynamics of histone lysine methylation: structures of methyl writers and erasers.

Anup K. Upadhyay; Xiaodong Cheng

In Eukarya, the packaging of DNA into chromatin provides a barrier that allows for regulation of access to the genome. Chromatin is refractory to processes acting on DNA. ATP-dependent chromatin remodeling machines and histone-modifying complexes can overcome this barrier (or strengthen it in silencing processes). Both components of chromatin (DNA and histones) are subject to postsynthetic covalent modifications, including methylation of lysines (the focus of this chapter). These lysine marks are generated by a host of histone lysine methyltransferases (writers) and can be removed by histone lysine demethylases (erasers). Importantly, epigenetic modifications impact chromatin structure directly or can be read by effector regulatory modules. Here, we summarize current knowledge on structural and functional properties of various histone lysine methyltransfereases and demethylases, with emphasis on their importance as druggable targets.


Current Opinion in Structural Biology | 2011

Coordinated methyl-lysine erasure: structural and functional linkage of a Jumonji demethylase domain and a reader domain

Anup K. Upadhyay; John R. Horton; Xing Zhang; Xiaodong Cheng

Both components of chromatin (DNA and histones) are subjected to dynamic postsynthetic covalent modifications. Dynamic histone lysine methylation involves the activities of modifying enzymes (writers), enzymes removing modifications (erasers), and readers of the epigenetic code. Known histone lysine demethylases include flavin-dependent monoamine oxidase lysine-specific demethylase 1 and α-ketoglutarate-Fe(II)-dependent dioxygenases containing Jumonji domains. Importantly, the Jumonji domain often associates with at least one additional recognizable domain (reader) within the same polypeptide that detects the methylation status of histones and/or DNA. Here, we summarize recent developments in characterizing structural and functional properties of various histone lysine demethylases, with emphasis on a mechanism of crosstalk between a Jumonji domain and its associated reader module(s). We further discuss the role of recently identified Tet1 enzyme in oxidizing 5-methylcytosine to 5-hydroxymethylcytosine in DNA.


Molecular Cell | 2017

The Role of N-α-acetyltransferase 10 Protein in DNA Methylation and Genomic Imprinting

Chen Cheng Lee; Shih Huan Peng; Li Shen; Chung Fan Lee; Ting Huei Du; Ming Lun Kang; Guoliang Xu; Anup K. Upadhyay; Xiaodong Cheng; Yu Ting Yan; Yi Zhang; Li-Jung Juan

Genomic imprinting is an allelic gene expression phenomenon primarily controlled by allele-specific DNA methylation at the imprinting control region (ICR), but the underlying mechanism remains largely unclear. N-α-acetyltransferase 10 protein (Naa10p) catalyzes N-α-acetylation of nascent proteins, and mutation of human Naa10p is linked to severe developmental delays. Here we report that Naa10-null mice display partial embryonic lethality, growth retardation, brain disorders, and maternal effect lethality, phenotypes commonly observed in defective genomic imprinting. Genome-wide analyses further revealed global DNA hypomethylation and enriched dysregulation of imprinted genes in Naa10p-knockout embryos and embryonic stem cells. Mechanistically, Naa10p facilitates binding of DNA methyltransferase 1 (Dnmt1) to DNA substrates, including the ICRs of the imprinted allele during S phase. Moreover, the lethal Ogden syndrome-associated mutation of human Naa10p disrupts its binding to the ICR of H19 and Dnmt1 recruitment. Our study thus links Naa10p mutation-associated Ogden syndrome to defective DNA methylation and genomic imprinting.

Collaboration


Dive into the Anup K. Upadhyay's collaboration.

Top Co-Authors

Avatar

Xiaodong Cheng

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge