Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaodong Cheng is active.

Publication


Featured researches published by Xiaodong Cheng.


Journal of Biological Chemistry | 2002

Differential Signaling of Cyclic AMP OPPOSING EFFECTS OF EXCHANGE PROTEIN DIRECTLY ACTIVATED BY CYCLIC AMP AND cAMP-DEPENDENT PROTEIN KINASE ON PROTEIN KINASE B ACTIVATION

Fang C. Mei; Jingbo Qiao; Oxana M. Tsygankova; Judy L. Meinkoth; Lawrence A. Quilliam; Xiaodong Cheng

The recent discovery of Epac, a novel cAMP receptor protein, opens up a new dimension in studying cAMP-mediated cell signaling. It is conceivable that many of the cAMP functions previously attributed to cAMP-dependent protein kinase (PKA) are in fact also Epac-dependent. The finding of an additional intracellular cAMP receptor provides an opportunity to further dissect the divergent roles that cAMP exerts in different cell types. In this study, we probed cross-talk between cAMP signaling and the phosphatidylinositol 3-kinase/PKB pathways. Specifically, we examined the modulatory effects of cAMP on PKB activity by monitoring the specific roles that Epac and PKA play individually in regulating PKB activity. Our study suggests a complex regulatory scheme in which Epac and PKA mediate the opposing effects of cAMP on PKB regulation. Activation of Epac leads to a phosphatidylinositol 3-kinase-dependent PKB activation, while stimulation of PKA inhibits PKB activity. Furthermore, activation of PKB by Epac requires the proper subcellular targeting of Epac. The opposing effects of Epac and PKA on PKB activation provide a potential mechanism for the cell type-specific differential effects of cAMP. It is proposed that the net outcome of cAMP signaling is dependent upon the dynamic abundance and distribution of intracellular Epac and PKA.


Journal of Biological Chemistry | 2007

Oncogenic KRAS Activates Hedgehog Signaling Pathway in Pancreatic Cancer Cells

Zhenyu Ji; Fang C. Mei; Jingwu Xie; Xiaodong Cheng

Hedgehog (Hh) signaling is deregulated in multiple human cancers including pancreatic ductal adenocarcinoma (PDA). Because KRAS mutation represents one of the earliest genetic alterations and occurs almost universally in PDA, we hypothesized that oncogenic KRAS promotes pancreatic tumorigenesis in part through activation of the Hh pathway. Here, we report that oncogenic KRAS activates hedgehog signaling in PDA cells, utilizing a downstream effector pathway mediated by RAF/MEK/MAPK but not phosphatidylinositol 3-kinase (PI3K)/AKT. Oncogenic KRAS transformation of human pancreatic ductal epithelial cells increases GLI transcriptional activity, an effect that is inhibited by the MEK-specific inhibitors U0126 and PD98059, but not by the PI3K-specific inhibitor wortmannin. Inactivation of KRAS activity by a small interfering RNA specific for oncogenic KRAS inhibits GLI activity and GLI1 expression in PDA cell lines with activating KRAS mutation; the MEK inhibitors U0126 and PD98059 elicit a similar response. In addition, expression of the constitutively active form of BRAFE600, but not myr-AKT, blocks the inhibitory effects of KRAS knockdown on Hh signaling. Finally, suppressing GLI activity leads to a selective attenuation of the oncogenic transformation activity of mutant KRAS-expressing PDA cells. These results demonstrate that oncogenic KRAS, through RAF/MEK/MAPK signaling, is directly involved in the activation of the hedgehog pathway in PDA cells and that collaboration between these two signaling pathways may play an important role in PDA progression.


Molecular Pharmacology | 2013

A Novel EPAC-Specific Inhibitor Suppresses Pancreatic Cancer Cell Migration and Invasion

Muayad Almahariq; Tamara Tsalkova; Fang C. Mei; Haijun Chen; Jia Zhou; Sarita K. Sastry; Frank Schwede; Xiaodong Cheng

Exchange protein directly activated by cAMP (EPAC) and cAMP-dependent protein kinase (PKA) are two intracellular receptors that mediate the effects of the prototypic second messenger cAMP. Identifying pharmacological probes for selectively modulating EPAC activity represents a significant unmet need within the research field. Herein, we report the identification and characterization of 3-(5-tert-butyl-isoxazol-3-yl)-2-[(3-chloro-phenyl)-hydrazono]-3-oxo-propionitrile (ESI-09), a novel noncyclic nucleotide EPAC antagonist that is capable of specifically blocking intracellular EPAC-mediated Rap1 activation and Akt phosphorylation, as well as EPAC-mediated insulin secretion in pancreatic β cells. Using this novel EPAC-specific inhibitor, we have probed the functional roles of overexpression of EPAC1 in pancreatic cancer cells. Our studies show that EPAC1 plays an important role in pancreatic cancer cell migration and invasion, and thus represents a potential target for developing novel therapeutic strategies for pancreatic cancer.


Cancer Research | 2004

Activation of Antioxidant Pathways in Ras-Mediated Oncogenic Transformation of Human Surface Ovarian Epithelial Cells Revealed by Functional Proteomics and Mass Spectrometry

Travis W. Young; Fang C. Mei; Gong Yang; Jennifer A. Thompson-Lanza; Jinsong Liu; Xiaodong Cheng

Cellular transformation is a complex process involving genetic alterations associated with multiple signaling pathways. Development of a transformation model using defined genetic elements has provided an opportunity to elucidate the role of oncogenes and tumor suppressor genes in the initiation and development of ovarian cancer. To study the cellular and molecular mechanisms of Ras-mediated oncogenic transformation of ovarian epithelial cells, we used a proteomic approach involving two-dimensional electrophoresis and mass spectrometry to profile two ovarian epithelial cell lines, one immortalized with SV40 T/t antigens and the human catalytic subunit of telomerase and the other transformed with an additional oncogenic rasV12 allele. Of ∼2200 observed protein spots, we have identified >30 protein targets that showed significant changes between the immortalized and transformed cell lines using peptide mass fingerprinting. Among these identified targets, one most notable group of proteins altered significantly consists of enzymes involved in cellular redox balance. Detailed analysis of these protein targets suggests that activation of Ras-signaling pathways increases the threshold of reactive oxidative species (ROS) tolerance by up-regulating the overall antioxidant capacity of cells, especially in mitochondria. This enhanced antioxidant capacity protects the transformed cells from high levels of ROS associated with the uncontrolled growth potential of tumor cells. It is conceivable that an enhanced antioxidation capability may constitute a common mechanism for tumor cells to evade apoptosis induced by oxidative stresses at high ROS levels.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Isoform-specific antagonists of exchange proteins directly activated by cAMP.

Tamara Tsalkova; Fang C. Mei; Sheng Li; Oleg G. Chepurny; Tong Liu; George G. Holz; Virgil L. Woods; Xiaodong Cheng

The major physiological effects of cAMP in mammalian cells are transduced by two ubiquitously expressed intracellular cAMP receptors, protein kinase A (PKA) and exchange protein directly activated by cAMP (EPAC), as well as cyclic nucleotide-gated ion channels in certain tissues. Although a large number of PKA inhibitors are available, there are no reported EPAC-specific antagonists, despite extensive research efforts. Here we report the identification and characterization of noncyclic nucleotide EPAC antagonists that are exclusively specific for the EPAC2 isoform. These EAPC2-specific antagonists, designated as ESI-05 and ESI-07, inhibit Rap1 activation mediated by EAPC2, but not EPAC1, with high potency in vitro. Moreover, ESI-05 and ESI-07 are capable of suppressing the cAMP-mediated activation of EPAC2, but not EPAC1 and PKA, as monitored in living cells through the use of EPAC- and PKA-based FRET reporters, or by the use of Rap1-GTP pull-down assays. Deuterium exchange mass spectroscopy analysis further reveals that EPAC2-specific inhibitors exert their isoform selectivity through a unique mechanism by binding to a previously undescribed allosteric site: the interface of the two cAMP binding domains, which is not present in the EPAC1 isoform. Isoform-specific EPAC pharmacological probes are highly desired and will be valuable tools for dissecting the biological functions of EPAC proteins and their roles in various disease states.


Journal of Biological Chemistry | 2011

Mechanism of intracellular cAMP sensor Epac2 activation: cAMP-induced conformational changes identified by amide hydrogen/deuterium exchange mass spectrometry (DXMS).

Sheng Li; Tamara Tsalkova; Mark A. White; Fang C. Mei; Tong Liu; Daphne Wang; Virgil L. Woods; Xiaodong Cheng

Epac2, a guanine nucleotide exchange factor, regulates a wide variety of intracellular processes in response to second messenger cAMP. In this study, we have used peptide amide hydrogen/deuterium exchange mass spectrometry to probe the solution structural and conformational dynamics of full-length Epac2 in the presence and absence of cAMP. The results support a mechanism in which cAMP-induced Epac2 activation is mediated by a major hinge motion centered on the C terminus of the second cAMP binding domain. This conformational change realigns the regulatory components of Epac2 away from the catalytic core, making the later available for effector binding. Furthermore, the interface between the first and second cAMP binding domains is highly dynamic, providing an explanation of how cAMP gains access to the ligand binding sites that, in the crystal structure, are seen to be mutually occluded by the other cAMP binding domain. Moreover, cAMP also induces conformational changes at the ionic latch/hairpin structure, which is directly involved in RAP1 binding. These results suggest that in addition to relieving the steric hindrance imposed upon the catalytic lobe by the regulatory lobe, cAMP may also be an allosteric modulator directly affecting the interaction between Epac2 and RAP1. Finally, cAMP binding also induces significant conformational changes in the dishevelled/Egl/pleckstrin (DEP) domain, a conserved structural motif that, although missing from the active Epac2 crystal structure, is important for Epac subcellular targeting and in vivo functions.


Scientific Reports | 2015

Biochemical and Pharmacological Characterizations of ESI-09 Based EPAC Inhibitors: Defining the ESI-09 “Therapeutic Window”

Yingmin Zhu; Haijun Chen; Stephen Boulton; Fang C. Mei; Na Ye; Giuseppe Melacini; Jia Zhou; Xiaodong Cheng

The cAMP signaling cascade is one of the most frequently targeted pathways for the development of pharmaceutics. A plethora of recent genetic and pharmacological studies suggest that exchange proteins directly activated by cAMP (EPACs) are implicated in multiple pathologies. Selective EPAC inhibitors have been recently developed. One specific inhibitor, ESI-09, has been shown to block EPAC activity and functions, as well as to recapitulate genetic phenotypes of EPAC knockout mice when applied in vivo. However, a recent study raised concern that ESI-09 might act as a non-specific protein denaturant. Herein, we present a detailed biochemical and pharmacological characterization, as well as a structure-activity relationship (SAR) analysis of ESI-09. Our studies show that ESI-09 dose-dependently inhibits activity of both EPAC1 and EPAC2 with apparent IC50 values well below the concentrations shown to induce “protein denaturation”. Moreover, the ESI-09s action towards EPAC proteins is highly sensitive to minor modifications of the 3-chlorophenyl moiety. Taken together, these results demonstrate that ESI-09 indeed acts as an EPAC specific antagonist and does not significantly destabilize/denature proteins at pharmacological effective concentrations. This conclusion is further supported by NMR data showing that ESI-09 induces residue-dependent chemical shift changes at low concentrations, while preserving well dispersed peaks.


Molecular and Cellular Biology | 2013

Enhanced Leptin Sensitivity, Reduced Adiposity, and Improved Glucose Homeostasis in Mice Lacking Exchange Protein Directly Activated by Cyclic AMP Isoform 1

Jingbo Yan; Fang C. Mei; Hongqiang Cheng; Dieu Hung Lao; Yaohua Hu; Jingna Wei; Igor Patrikeev; Dapeng Hao; Sonja J. Stutz; Kelly T. Dineley; Massoud Motamedi; Jonathan D. Hommel; Kathryn A. Cunningham; Ju Chen; Xiaodong Cheng

ABSTRACT The prototypic second messenger cyclic AMP (cAMP) is essential for controlling cellular metabolism, including glucose and lipid homeostasis. In mammals, the majority of cAMP functions are mediated by cAMP-dependent protein kinase (PKA) and exchange proteins directly activated by cAMP (Epacs). To explore the physiological functions of Epac1, we generated Epac1 knockout mice. Here we report that Epac1 null mutants have reduced white adipose tissue and reduced plasma leptin levels but display heightened leptin sensitivity. Epac1-deficient mice are more resistant to high-fat diet-induced obesity, hyperleptinemia, and glucose intolerance. Furthermore, pharmacological inhibition of Epac by use of an Epac-specific inhibitor reduces plasma leptin levels in vivo and enhances leptin signaling in organotypic hypothalamic slices. Taken together, our results demonstrate that Epac1 plays an important role in regulating adiposity and energy balance.


Journal of Biological Chemistry | 2007

Protein Kinase A, not Epac, Suppresses Hedgehog Activity and Regulates Glucocorticoid Sensitivity in Acute Lymphoblastic Leukemia Cells

Zhenyu Ji; Fang C. Mei; Betty H. Johnson; E. Brad Thompson; Xiaodong Cheng

Cyclic AMP synergizes strongly with glucocorticoids (GC) to induce apoptosis in normal or malignant lymphoid cells. We examined the individual roles that cAMP-dependent protein kinase (PKA) and Epac (exchange protein directly activated by cAMP), two intracellular cAMP receptors, play in this synergistic effect. Our studies demonstrate that PKA is responsible for the observed synergism with GC, whereas Epac exerts a weak antagonistic effect against GC-induced apoptosis. We find that endogenous PKA activity is higher in the GC-sensitive clone than in the GC-resistant clone. In the GC-sensitive clone, higher PKA activity is associated with lower Hedgehog (Hh) activity. Moreover, inhibition of Hh activity by Hh pathway-specific inhibitors leads to cell cycle arrest and apoptosis in CEM (human acute lymphoblastic leukemia, T lineage) cells, and the GC-sensitive clone is more sensitive to Hh inhibition. These results suggest that Hh activity is critical for leukemia cell growth and survival and that the level of Hh activity is in part responsible for the synergism between cAMP and GC.


Oncogene | 2002

Mdm-2 binding and TAFII31 recruitment is regulated by hydrogen bond disruption between the p53 residues Thr18 and Asp21

James R. Jabbur; Amy D. Tabor; Xiaodong Cheng; Hua Wang; Motonari Uesugi; Guillermina Lozano; Wei Zhang

Analyses of five wild-type p53 containing cell lines revealed lineage specific differences in phosphorylation of Thr18 after treatment with ionizing (IR) or ultraviolet (UV) radiation. Importantly, Thr18 phosphorylation correlated with induction of the p53 downstream targets p21Waf1/Cip1 (p21) and Mdm-2, suggesting a transactivation enhancing role. Thr18 phosphorylation has been shown to abolish side-chain hydrogen bonding between Thr18 and Asp21, an interaction necessary for stabilizing alpha–helical conformation within the transactivation domain. Mutagenesis-derived hydrogen bond disruption attenuated the interaction of p53 with the transactivation repressor Mdm-2 but had no direct effect on the interaction of p53 with the basal transcription factor TAFII31. However, prior incubation of p53 mutants with Mdm-2 modulated TAFII31 interaction with p53, suggesting Mdm-2 blocks the accessibility of p53 to TAFII31. Consistently, p53-null cells transfected with hydrogen bond disrupting p53 mutants demonstrated enhanced endogenous p21 expression, whereas p53/Mdm-2-double null cells exhibited no discernible differences in p21 expression. We conclude disruption of intramolecular hydrogen bonding between Thr18 and Asp21 enhances p53 transactivation by modulating Mdm-2 binding, facilitating TAFII31 recruitment.

Collaboration


Dive into the Xiaodong Cheng's collaboration.

Top Co-Authors

Avatar

Fang C. Mei

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Tamara Tsalkova

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Jia Zhou

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Yingmin Zhu

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Ching Lee

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Jinsong Liu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ju Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Mark A. White

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Muayad Almahariq

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge