Anupama Sinha
Sandia National Laboratories
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anupama Sinha.
PLOS ONE | 2013
Hanyoup Kim; Mais J. Jebrail; Anupama Sinha; Zachary W. Bent; Owen David Solberg; Kelly P. Williams; Stanley A. Langevin; Ronald F. Renzi; James L. Van De Vreugde; Robert J. Meagher; Joseph S. Schoeniger; Todd W. Lane; Steven S. Branda; Michael S. Bartsch; Kamlesh D. Patel
Next-generation sequencing (NGS) is emerging as a powerful tool for elucidating genetic information for a wide range of applications. Unfortunately, the surging popularity of NGS has not yet been accompanied by an improvement in automated techniques for preparing formatted sequencing libraries. To address this challenge, we have developed a prototype microfluidic system for preparing sequencer-ready DNA libraries for analysis by Illumina sequencing. Our system combines droplet-based digital microfluidic (DMF) sample handling with peripheral modules to create a fully-integrated, sample-in library-out platform. In this report, we use our automated system to prepare NGS libraries from samples of human and bacterial genomic DNA. E. coli libraries prepared on-device from 5 ng of total DNA yielded excellent sequence coverage over the entire bacterial genome, with >99% alignment to the reference genome, even genome coverage, and good quality scores. Furthermore, we produced a de novo assembly on a previously unsequenced multi-drug resistant Klebsiella pneumoniae strain BAA-2146 (KpnNDM). The new method described here is fast, robust, scalable, and automated. Our device for library preparation will assist in the integration of NGS technology into a wide variety of laboratories, including small research laboratories and clinical laboratories.
RNA Biology | 2013
Stanley A. Langevin; Zachary W. Bent; Owen David Solberg; Deanna Joy Curtis; Pamela Lane; Kelly P. Williams; Joseph S. Schoeniger; Anupama Sinha; Todd W. Lane; Steven S. Branda
Use of second generation sequencing (SGS) technologies for transcriptional profiling (RNA-Seq) has revolutionized transcriptomics, enabling measurement of RNA abundances with unprecedented specificity and sensitivity and the discovery of novel RNA species. Preparation of RNA-Seq libraries requires conversion of the RNA starting material into cDNA flanked by platform-specific adaptor sequences. Each of the published methods and commercial kits currently available for RNA-Seq library preparation suffers from at least one major drawback, including long processing times, large starting material requirements, uneven coverage, loss of strand information and high cost. We report the development of a new RNA-Seq library preparation technique that produces representative, strand-specific RNA-Seq libraries from small amounts of starting material in a fast, simple and cost-effective manner. Additionally, we have developed a new quantitative PCR-based assay for precisely determining the number of PCR cycles to perform for optimal enrichment of the final library, a key step in all SGS library preparation workflows.
Infection and Immunity | 2015
Zachary W. Bent; Kunal Poorey; David M. Brazel; Annette E. LaBauve; Anupama Sinha; Deanna Joy Curtis; Samantha E. House; Karen E. Tew; Rachelle Y. Hamblin; Kelly P. Williams; Steven S. Branda; Glenn M. Young; Robert J. Meagher
ABSTRACT Yersinia enterocolitica is typically considered an extracellular pathogen; however, during the course of an infection, a significant number of bacteria are stably maintained within host cell vacuoles. Little is known about this population and the role it plays during an infection. To address this question and to elucidate the spatially and temporally dynamic gene expression patterns of Y. enterocolitica biovar 1B through the course of an in vitro infection, transcriptome sequencing and differential gene expression analysis of bacteria infecting murine macrophage cells were performed under four distinct conditions. Bacteria were first grown in a nutrient-rich medium at 26°C to establish a baseline of gene expression that is unrelated to infection. The transcriptomes of these bacteria were then compared to bacteria grown in a conditioned cell culture medium at 37°C to identify genes that were differentially expressed in response to the increased temperature and medium but not in response to host cells. Infections were then performed, and the transcriptomes of bacteria found on the extracellular surface and intracellular compartments were analyzed individually. The upregulated genes revealed potential roles for a variety of systems in promoting intracellular virulence, including the Ysa type III secretion system, the Yts2 type II secretion system, and the Tad pilus. It was further determined that mutants of each of these systems had decreased virulence while infecting macrophages. Overall, these results reveal the complete set of genes expressed by Y. enterocolitica in response to infection and provide the groundwork for future virulence studies.
PLOS ONE | 2015
Michael S. Bartsch; Harrison S. Edwards; Daniel Lee; Caroline E. Moseley; Karen E. Tew; Ronald F. Renzi; James L. Van De Vreugde; Hanyoup Kim; Daniel L. Knight; Anupama Sinha; Steven S. Branda; Kamlesh D. Patel
Advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology (e.g., aliquoting, centrifuging, mixing, and thermal cycling) to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC), a novel wheel-based device capable of cycling up to four different fixed-temperature blocks into contact with a stationary 4-microliter capillary-bound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR) system that uses low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between-run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, we present preliminary results for rapid single-plex PCR, multiplex short tandem repeat (STR) amplification, and second strand cDNA synthesis.
Scientific Reports | 2018
Raga Krishnakumar; Anupama Sinha; Sara W. Bird; Harikrishnan Jayamohan; Harrison S. Edwards; Joseph S. Schoeniger; Kamlesh D. Patel; Steven S. Branda; Michael S. Bartsch
Emerging sequencing technologies are allowing us to characterize environmental, clinical and laboratory samples with increasing speed and detail, including real-time analysis and interpretation of data. One example of this is being able to rapidly and accurately detect a wide range of pathogenic organisms, both in the clinic and the field. Genomes can have radically different GC content however, such that accurate sequence analysis can be challenging depending upon the technology used. Here, we have characterized the performance of the Oxford MinION nanopore sequencer for detection and evaluation of organisms with a range of genomic nucleotide bias. We have diagnosed the quality of base-calling across individual reads and discovered that the position within the read affects base-calling and quality scores. Finally, we have evaluated the performance of the current state-of-the-art neural network-based MinION basecaller, characterizing its behavior with respect to systemic errors as well as context- and sequence-specific errors. Overall, we present a detailed characterization the capabilities of the MinION in terms of generating high-accuracy sequence data from genomes with a wide range of nucleotide content. This study provides a framework for designing the appropriate experiments that are the likely to lead to accurate and rapid field-forward diagnostics.
Nucleic Acids Research | 2016
Joseph S. Schoeniger; Corey M. Hudson; Zachary W. Bent; Anupama Sinha; Kelly P. Williams
Virulence genes on mobile DNAs such as genomic islands (GIs) and plasmids promote bacterial pathogen emergence. Excision is an early step in GI mobilization, producing a circular GI and a deletion site in the chromosome; circular forms are also known for some bacterial insertion sequences (ISs). The recombinant sequence at the junctions of such circles and deletions can be detected sensitively in high-throughput sequencing data, using new computational methods that enable empirical discovery of mobile DNAs. For the rich mobilome of a hospital Klebsiella pneumoniae strain, circularization junctions (CJs) were detected for six GIs and seven IS types. Our methods revealed differential biology of multiple mobile DNAs, imprecision of integrases and transposases, and differential activity among identical IS copies for IS26, ISKpn18 and ISKpn21. Using the resistance of circular dsDNA molecules to exonuclease, internally calibrated with the native plasmids, showed that not all molecules bearing GI CJs were circular. Transpositions were also detected, revealing replicon preference (ISKpn18 prefers a conjugative IncA/C2 plasmid), local action (IS26), regional preferences, selection (against capsule synthesis) and IS polarity inversion. Efficient discovery and global characterization of numerous mobile elements per experiment improves accounting for the new gene combinations that arise in emerging pathogens.
Communications Biology | 2018
Philip R. Miller; Robert M. Taylor; Bao Quoc Tran; Gabrielle Boyd; Trevor Glaros; Victor H. Chavez; Raga Krishnakumar; Anupama Sinha; Kunal Poorey; Kelly P. Williams; Steven S. Branda; Justin T. Baca
Dermal interstitial fluid (ISF) is an underutilized information-rich biofluid potentially useful in health status monitoring applications whose contents remain challenging to characterize. Here, we present a facile microneedle approach for dermal ISF extraction with minimal pain and no blistering for human subjects and rats. Extracted ISF volumes were sufficient for determining transcriptome, and proteome signatures. We noted similar profiles in ISF, serum, and plasma samples, suggesting that ISF can be a proxy for direct blood sampling. Dynamic changes in RNA-seq were recorded in ISF from induced hypoxia conditions. Finally, we report the first isolation and characterization, to our knowledge, of exosomes from dermal ISF. The ISF exosome concentration is 12–13 times more enriched when compared to plasma and serum and represents a previously unexplored biofluid for exosome isolation. This minimally invasive extraction approach can enable mechanistic studies of ISF and demonstrates the potential of ISF for real-time health monitoring applications.Philip Miller et al. present an approach for extracting dermal interstitial fluid (ISF) using an array of hollow microneedles in a cylindrical substrate that minimizes skin compression and tissue damage. They extract larger volumes of ISF suitable for downstream analyses, compared to previous reports.
Genome Announcements | 2016
Patrik D’haeseleer; Shannon L. Johnson; Karen W. Davenport; Patrick Chain; Joe Schoeniger; Debjit Ray; Anupama Sinha; Kelly P. Williams; José Peña; Steven S. Branda; Sahar El-Etr
ABSTRACT Here, we present the draft genome sequence of Burkholderia pseudomallei PHLS 6, a virulent clinical strain isolated from a melioidosis patient in Bangladesh in 1960. The draft genome consists of 39 contigs and is 7,322,181 bp long.
Archive | 2010
Jeanne C. Stachowiak; Mark J. Stevens; David B. Robinson; Steven S. Branda; Frank Zendejas; Robert J. Meagher; Darryl Yoshio Sasaki; George D. Bachand; Carl C. Hayden; Anupama Sinha; Elisa Abate; Julia Wang; Amanda Carroll-Portillo; Haiqing Liu
Cell membranes are dynamic substrates that achieve a diverse array of functions through multi-scale reconfigurations. We explore the morphological changes that occur upon protein interaction to model membrane systems that induce deformation of their planar structure to yield nanotube assemblies. In the two examples shown in this report we will describe the use of membrane adhesion and particle trajectory to form lipid nanotubes via mechanical stretching, and protein adsorption onto domains and the induction of membrane curvature through steric pressure. Through this work the relationship between membrane bending rigidity, protein affinity, and line tension of phase separated structures were examined and their relationship in biological membranes explored.
Analytical Chemistry | 2014
Mais J. Jebrail; Anupama Sinha; Samantha Vellucci; Ronald F. Renzi; Cesar Ambriz; Carmen Gondhalekar; Joseph S. Schoeniger; Kamlesh D. Patel; Steven S. Branda