Anushka C. Galasiti Kankanamalage
Wichita State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Hotspot
Dive into the research topics where Anushka C. Galasiti Kankanamalage is active.
Publication
Featured researches published by Anushka C. Galasiti Kankanamalage.
Journal of Medicinal Chemistry | 2015
Anushka C. Galasiti Kankanamalage; Yunjeong Kim; Pathum M. Weerawarna; Roxanne Adeline Z. Uy; Vishnu C. Damalanka; Sivakoteswara Rao Mandadapu; Kevin R. Alliston; Nurjahan Mehzabeen; Kevin P. Battaile; Scott Lovell; Kyeong-Ok Chang; William C. Groutas
Norovirus infection constitutes the primary cause of acute viral gastroenteritis. There are currently no vaccines or norovirus-specific antiviral therapeutics available for the management of norovirus infection. Norovirus 3C-like protease is essential for viral replication, consequently, inhibition of this enzyme is a fruitful avenue of investigation that may lead to the emergence of antinorovirus therapeutics. We describe herein the optimization of dipeptidyl inhibitors of norovirus 3C-like protease using iterative SAR, X-ray crystallographic, and enzyme and cell-based studies. We also demonstrate herein in vivo efficacy of an inhibitor using the murine model of norovirus infection.
PLOS Pathogens | 2016
Yunjeong Kim; Hongwei Liu; Anushka C. Galasiti Kankanamalage; Sahani Weerasekara; Duy H. Hua; William C. Groutas; Kyeong-Ok Chang; Niels C. Pedersen
Coronaviruses infect animals and humans causing a wide range of diseases. The diversity of coronaviruses in many mammalian species is contributed by relatively high mutation and recombination rates during replication. This dynamic nature of coronaviruses may facilitate cross-species transmission and shifts in tissue or cell tropism in a host, resulting in substantial change in virulence. Feline enteric coronavirus (FECV) causes inapparent or mild enteritis in cats, but a highly fatal disease, called feline infectious peritonitis (FIP), can arise through mutation of FECV to FIP virus (FIPV). The pathogenesis of FIP is intimately associated with immune responses and involves depletion of T cells, features shared by some other coronaviruses like Severe Acute Respiratory Syndrome Coronavirus. The increasing risks of highly virulent coronavirus infections in humans or animals call for effective antiviral drugs, but no such measures are yet available. Previously, we have reported the inhibitors that target 3C-like protease (3CLpro) with broad-spectrum activity against important human and animal coronaviruses. Here, we evaluated the therapeutic efficacy of our 3CLpro inhibitor in laboratory cats with FIP. Experimental FIP is 100% fatal once certain clinical and laboratory signs become apparent. We found that antiviral treatment led to full recovery of cats when treatment was started at a stage of disease that would be otherwise fatal if left untreated. Antiviral treatment was associated with a rapid improvement in fever, ascites, lymphopenia and gross signs of illness and cats returned to normal health within 20 days or less of treatment. Significant reduction in viral titers was also observed in cats. These results indicate that continuous virus replication is required for progression of immune-mediated inflammatory disease of FIP. These findings may provide important insights into devising therapeutic strategies and selection of antiviral compounds for further development for important coronaviruses in animals and humans.
Journal of Medicinal Chemistry | 2015
Yunjeong Kim; Anushka C. Galasiti Kankanamalage; Kyeong-Ok Chang; William C. Groutas
Noroviruses are members of the family Caliciviridae. Norovirus infections are a global health burden that impacts >20 million individuals annually in the U.S. alone. Noroviruses are associated with high morbidity among vulnerable populations, particularly immunocompromised patients. This perspective highlights recent developments related to the discovery and development of norovirus-specific small-molecule therapeutics as well as recent advances in our understanding of norovirus biology and pathogenesis. Most of the work in this area is at the early discovery stage and has been primarily focused on inhibitors of norovirus 3C-like protease and RNA dependent RNA polymerase. However, recent discoveries emanating from basic studies in norovirus research have resulted in the identification of new host-related drug targets that can be exploited. A repurposed compound has been advanced to human clinical studies.
Journal of Virology | 2015
Yunjeong Kim; Vinay Shivanna; Sanjeev Narayanan; Allan M. Prior; Sahani Weerasekara; Duy H. Hua; Anushka C. Galasiti Kankanamalage; William C. Groutas; Kyeong-Ok Chang
ABSTRACT Feline infectious peritonitis and virulent, systemic calicivirus infection are caused by certain types of feline coronaviruses (FCoVs) and feline caliciviruses (FCVs), respectively, and are important infectious diseases with high fatality rates in members of the Felidae family. While FCoV and FCV belong to two distinct virus families, the Coronaviridae and the Caliciviridae, respectively, they share a dependence on viral 3C-like protease (3CLpro) for their replication. Since 3CLpro is functionally and structurally conserved among these viruses and essential for viral replication, 3CLpro is considered a potential target for the design of antiviral drugs with broad-spectrum activities against these distinct and highly important viral infections. However, small-molecule inhibitors against the 3CLpro enzymes of FCoV and FCV have not been previously identified. In this study, derivatives of peptidyl compounds targeting 3CLpro were synthesized and evaluated for their activities against FCoV and FCV. The structures of compounds that showed potent dual antiviral activities with a wide margin of safety were identified and are discussed. Furthermore, the in vivo efficacy of 3CLpro inhibitors was evaluated using a mouse model of coronavirus infection. Intraperitoneal administration of two 3CLpro inhibitors in mice infected with murine hepatitis virus A59, a hepatotropic coronavirus, resulted in significant reductions in virus titers and pathological lesions in the liver compared to the findings for the controls. These results suggest that the series of 3CLpro inhibitors described here may have the potential to be further developed as therapeutic agents against these important viruses in domestic and wild cats. This study provides important insights into the structure and function relationships of 3CLpro for the design of antiviral drugs with broader antiviral activities. IMPORTANCE Feline infectious peritonitis virus (FIPV) is the leading cause of death in young cats, and virulent, systemic feline calicivirus (vs-FCV) causes a highly fatal disease in cats for which no preventive or therapeutic measure is available. The genomes of these distinct viruses, which belong to different virus families, encode a structurally and functionally conserved 3C-like protease (3CLpro) which is a potential target for broad-spectrum antiviral drug development. However, no studies have previously reported a structural platform for the design of antiviral drugs with activities against these viruses or on the efficacy of 3CLpro inhibitors against coronavirus infection in experimental animals. In this study, we explored the structure-activity relationships of the derivatives of 3CLpro inhibitors and identified inhibitors with potent dual activities against these viruses. In addition, the efficacy of the 3CLpro inhibitors was demonstrated in mice infected with a murine coronavirus. Overall, our study provides the first insight into a structural platform for anti-FIPV and anti-FCV drug development.
Bioorganic & Medicinal Chemistry Letters | 2013
Sivakoteswara Rao Mandadapu; Mallikarjuna Reddy Gunnam; Anushka C. Galasiti Kankanamalage; Roxanne Adeline Z. Uy; Kevin R. Alliston; Gerald H. Lushington; Yunjeong Kim; Kyeong-Ok Chang; William C. Groutas
The design, synthesis, and evaluation of a series of dipeptidyl α-hydroxyphosphonates is reported. The synthesized compounds displayed high anti-norovirus activity in a cell-based replicon system, as well as high enzyme selectivity.
European Journal of Medicinal Chemistry | 2016
Pathum M. Weerawarna; Yunjeong Kim; Anushka C. Galasiti Kankanamalage; Vishnu C. Damalanka; Gerald H. Lushington; Kevin R. Alliston; Nurjahan Mehzabeen; Kevin P. Battaile; Scott Lovell; Kyeong-Ok Chang; William C. Groutas
Abstract Outbreaks of acute gastroenteritis caused by noroviruses constitute a public health concern worldwide. To date, there are no approved drugs or vaccines for the management and prophylaxis of norovirus infections. A potentially effective strategy for the development of norovirus therapeutics entails the discovery of inhibitors of norovirus 3CL protease, an enzyme essential for noroviral replication. We describe herein the structure-based design of the first class of permeable, triazole-based macrocyclic inhibitors of norovirus 3C-like protease, as well as pertinent X-ray crystallographic, biochemical, spectroscopic, and antiviral studies.
Journal of Medicinal Chemistry | 2016
Vishnu C. Damalanka; Yunjeong Kim; Kevin R. Alliston; Pathum M. Weerawarna; Anushka C. Galasiti Kankanamalage; Gerald H. Lushington; Nurjahan Mehzabeen; Kevin P. Battaile; Scott Lovell; Kyeong-Ok Chang; William C. Groutas
Human noroviruses are the primary causative agents of acute gastroenteritis and a pressing public health burden worldwide. There are currently no vaccines or small molecule therapeutics available for the treatment or prophylaxis of norovirus infections. Norovirus 3CL protease plays a vital role in viral replication by generating structural and nonstructural proteins via the cleavage of the viral polyprotein. Thus, molecules that inhibit the viral protease may have potential therapeutic value. We describe herein the structure-based design, synthesis, and in vitro and cell-based evaluation of the first class of oxadiazole-based, permeable macrocyclic inhibitors of norovirus 3CL protease.
Journal of Feline Medicine and Surgery | 2017
Niels C. Pedersen; Yunjeong Kim; Hongwei Liu; Anushka C. Galasiti Kankanamalage; Chrissy Eckstrand; William C. Groutas; Michael J. Bannasch; Juliana M. Meadows; Kyeong-Ok Chang
Objectives The safety and efficacy of the 3C-like protease inhibitor GC376 was tested on a cohort of client-owned cats with various forms of feline infectious peritonitis (FIP). Methods Twenty cats from 3.3–82 months of age (mean 10.4 months) with various forms of FIP were accepted into a field trial. Fourteen cats presented with wet or dry-to-wet FIP and six cats presented with dry FIP. GC376 was administered subcutaneously every 12 h at a dose of 15 mg/kg. Cats with neurologic signs were excluded from the study. Results Nineteen of 20 cats treated with GC376 regained outward health within 2 weeks of initial treatment. However, disease signs recurred 1–7 weeks after primary treatment and relapses and new cases were ultimately treated for a minimum of 12 weeks. Relapses no longer responsive to treatment occurred in 13 of these 19 cats within 1–7 weeks of initial or repeat treatment(s). Severe neurologic disease occurred in 8/13 cats that failed treatment and five cats had recurrences of abdominal lesions. At the time of writing, seven cats were in disease remission. Five kittens aged 3.3–4.4 months with wet FIP were treated for 12 weeks and have been in disease remission after stopping treatment and at the time of writing for 5–14 months (mean 11.2 months). A sixth kitten was in remission for 10 weeks after 12 weeks of treatment, relapsed and is responding to a second round of GC376. The seventh was a 6.8-year-old cat with only mesenteric lymph node involvement that went into remission after three relapses that required progressively longer repeat treatments over a 10 month period. Side effects of treatment included transient stinging upon injection and occasional foci of subcutaneous fibrosis and hair loss. There was retarded development and abnormal eruption of permanent teeth in cats treated before 16–18 weeks of age. Conclusions and relevance GC376 showed promise in treating cats with certain presentations of FIP and has opened the door to targeted antiviral drug therapy.
Antiviral Research | 2016
Yunjeong Kim; Anushka C. Galasiti Kankanamalage; Vishnu C. Damalanka; Pathum M. Weerawarna; William C. Groutas; Kyeong-Ok Chang
Abstract Enterovirus D68 (EV-D68) is an emerging pathogen responsible for mild to severe respiratory infections that occur mostly in infants, children and teenagers. EV-D68, one of more than 100 non-polio enteroviruses, is acid-labile and biologically similar to human rhinoviruses (HRV) (originally classified as HRV87). However, there is no approved preventive or therapeutic measure against EV-D68, HRV, or other enteroviruses. In this study, we evaluated the antiviral activity of series of dipeptidyl compounds against EV-D68 and HRV strains, and demonstrated that several peptidyl aldehyde and α-ketoamide peptidyl compounds are potent inhibitors of EV-D68 and HRV strains with high in-vitro therapeutic indices (>1000). One of the α-ketoamide compounds is shown to have favorable pharmacokinetics profiles, including a favorable oral bioavailability in rats. Recent successful development of α-ketoamide protease inhibitors against hepatitis C virus suggests these compounds may have a high potential for further optimization and development against emerging EV-D68, as well as HRV.
Expert Opinion on Therapeutic Patents | 2016
Anushka C. Galasiti Kankanamalage; Pathum M. Weerawarna; Yunjeong Kim; Kyeong-Ok Chang; William C. Groutas
ABSTRACT Introduction: Human noroviruses are the primary causative agents of acute gastroenteritis and are a pressing public health burden worldwide. There are currently no vaccines or small molecule therapeutics available for the treatment or prophylaxis of norovirus infections. An improved understanding of norovirus biology, as well as the pathogenic mechanisms underlying the disease, has provided the impetus for a range of intense exploratory drug discovery efforts targeting viral and host factors. Areas covered: An overview of norovirus inhibitors disclosed in the patent literature (2010-present) and Clinicaltrials.gov is presented. The review is further enriched and supplemented by recent literature reports. Expert opinion: Seminal discoveries made in recent years, including a better understanding of the pathobiology and life cycle of norovirus, the identification and targeting of multiple viral and host factors, the advent of a replicon system and a small animal model for the preclinical evaluation of lead compounds, and the availability of high resolution X-ray crystal structures that can be utilized in structure-based drug design and lead optimization campaigns, collectively suggest that a small molecule therapeutic and prophylactic for norovirus infection is likely to emerge in the not too distant future.