Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anyanee Kamkaew is active.

Publication


Featured researches published by Anyanee Kamkaew.


ACS Nano | 2016

Scintillating Nanoparticles as Energy Mediators for Enhanced Photodynamic Therapy

Anyanee Kamkaew; Feng Chen; Yonghua Zhan; Rebecca L. Majewski; Weibo Cai

Achieving effective treatment of deep-seated tumors is a major challenge for traditional photodynamic therapy (PDT) due to difficulties in delivering light into the subsurface. Thanks to their great tissue penetration, X-rays hold the potential to become an ideal excitation source for activating photosensitizers (PS) that accumulate in deep tumor tissue. Recently, a wide variety of nanoparticles have been developed for this purpose. The nanoparticles are designed as carriers for loading various kinds of PSs and can facilitate the activation process by transferring energy harvested from X-ray irradiation to the loaded PS. In this review, we focus on recent developments of nanoscintillators with high energy transfer efficiency, their rational designs, as well as potential applications in next-generation PDT. Treatment of deep-seated tumors by using radioisotopes as an internal light source will also be discussed.


Small | 2014

In Vivo Studies of Nanostructure-Based Photosensitizers for Photodynamic Cancer Therapy

Siew Hui Voon; Lik Voon Kiew; Hong Boon Lee; Siang Hui Lim; Mohamed Ibrahim Noordin; Anyanee Kamkaew; Kevin Burgess; Lip Yong Chung

Animal models, particularly rodents, are major translational models for evaluating novel anticancer therapeutics. In this review, different types of nanostructure-based photosensitizers that have advanced into the in vivo evaluation stage for the photodynamic therapy (PDT) of cancer are described. This article focuses on the in vivo efficacies of the nanostructures as delivery agents and as energy transducers for photosensitizers in animal models. These materials are useful in overcoming solubility issues, lack of tumor specificity, and access to tumors deep in healthy tissue. At the end of this article, the opportunities made possible by these multiplexed nanostructure-based systems are summarized, as well as the considerable challenges associated with obtaining regulatory approval for such materials. The following questions are also addressed: (1) Is there a pressing demand for more nanoparticle materials? (2) What is the prognosis for regulatory approval of nanoparticles to be used in the clinic?


Journal of Medicinal Chemistry | 2013

Double-Targeting Using a TrkC Ligand Conjugated to Dipyrrometheneboron Difluoride (BODIPY) Based Photodynamic Therapy (PDT) Agent

Anyanee Kamkaew; Kevin Burgess

A molecule 1 (IY-IY-PDT) was designed to contain a fragment (IY-IY) that targets the TrkC receptor and a photosensitizer that acts as an agent for photodynamic therapy (PDT). Molecule 1 had submicromolar photocytotoxicities to cells that were engineered to stably express TrkC (NIH3T3-TrkC) or that naturally express high levels of TrkC (SY5Y neuroblastoma lines). Control experiments showed that 1 is not cytotoxic in the dark and has significantly less photocytotoxicity toward cells that do not express TrkC (NIH3T3-WT). Other controls featuring a similar agent 2 (YI-YI-PDT), which is identical and isomeric with 1 except that the targeting region is scrambled (a YI-YI motif, see text), showed that 1 is considerably more photocytotoxic than 2 on TrkC(+) cells. Imaging live TrkC(+) cells after treatment with a fluorescent agent 1 (IY-IY-PDT) proved that 1 permeates into TrkC(+) cells and is localized in the lysosomes. This observation indirectly indicates that agent 1 enters the cells via the TrkC receptor. Consistent with this, the dose-dependent PDT effects of 1 can be competitively reduced by the natural TrkC ligand, neurotrophin NT3.


ACS Nano | 2016

Dual-Modality Positron Emission Tomography/Optical Image-Guided Photodynamic Cancer Therapy with Chlorin e6-Containing Nanomicelles

Liang Cheng; Anyanee Kamkaew; Haiyan Sun; Dawei Jiang; Hector F. Valdovinos; Hua Gong; Christopher G. England; Shreya Goel; Todd E. Barnhart; Weibo Cai

Multifunctional nanoparticles with combined diagnostic and therapeutic functions show great promise in nanomedicine. Herein, we develop an organic photodynamic therapy (PDT) system based on polyethylene glycol (PEG)-coated nanomicelles conjugated with ∼20% chlorin e6 (PEG-Ce 6 nanomicelles), which functions as an optical imaging agent, as well as a PDT agent. The formed PEG-Ce 6 nanomicelles with the size of ∼20 nm were highly stable in various physiological solutions for a long time. Moreover, Ce 6 can also be a (64)Cu chelating agent for in vivo positron emission tomography (PET). By simply mixing, more than 90% of (64)Cu was chelator-free labeled on PEG-Ce 6 nanomicelles, and they also showed high stability in serum conditions. Both fluorescence imaging and PET imaging revealed that PEG-Ce 6 nanomicelles displayed high tumor uptake (13.7 ± 2.2%ID/g) after intravenous injection into tumor-bearing mice at the 48 h time point. In addition, PEG-Ce 6 nanomicelles exhibited excellent PDT properties upon laser irradiation, confirming the theranostic properties of PEG-Ce 6 nanomicelles for imaging and treatment of cancer. In addition, PDT was not shown to render any appreciable toxicity. This work presents a theranostic platform based on polymer nanomicelles with great potential in multimodality imaging-guided photodynamic cancer therapy.


Medicinal Research Reviews | 2016

Small Molecules for Active Targeting in Cancer.

Chin S. Kue; Anyanee Kamkaew; Kevin Burgess; Lik Voon Kiew; Lip Yong Chung; Hong B. Lee

For the purpose of this review, active targeting in cancer research encompasses strategies wherein a ligand for a cell surface receptor expressed on tumor cells is used to deliver a cytotoxic or imaging cargo. This area of research is more than two decades old, but in those 20 and more years, how many receptors have been studied extensively? What kinds of the ligands are used for active targeting? Are they mostly naturally occurring molecules such as folic acid, or synthetic substances developed in campaigns for medicinal chemistry efforts? This review outlines the most important receptor or ligand combinations that have been used in active targeting to answer these questions, and therefore to address the most important one of all: is research in active targeting affording diminishing returns, or is this an area for which the potential far exceeds progress made so far?


Advanced Functional Materials | 2017

Renal-Clearable PEGylated Porphyrin Nanoparticles for Image-Guided Photodynamic Cancer Therapy

Liang Cheng; Dawei Jiang; Anyanee Kamkaew; Hector F. Valdovinos; Hyung-Jun Im; Liangzhu Feng; Christopher G. England; Shreya Goel; Todd E. Barnhart; Zhuang Liu; Weibo Cai

Noninvasive dynamic positron emission tomography (PET) imaging was used to investigate the balance between renal clearance and tumor uptake behaviors of polyethylene glycol (PEG)-modified porphyrin nanoparticles (TCPP-PEG) with various molecular weights. TCPP-PEG10K nanoparticles with clearance behavior would be a good candidate for PET image-guided photodynamic therapy.


Small | 2016

Facile Preparation of Multifunctional WS2/WOx Nanodots for Chelator-Free 89Zr-Labeling and In Vivo PET Imaging

Liang Cheng; Anyanee Kamkaew; Sida Shen; Hector F. Valdovinos; Haiyan Sun; Reinier Hernandez; Shreya Goel; Teng Liu; Cyrus Thompson; Todd E. Barnhart; Zhuang Liu; Weibo Cai

While position emission tomography (PET) is an important molecular imaging technique for both preclinical research and clinical disease diagnosis/prognosis, chelator-free radiolabeling has emerged as a promising alternative approach to label biomolecules or nanoprobes in a facile way. Herein, starting from bottom-up synthesized WS2 nanoflakes, this study fabricates a unique type of WS2 /WOx nanodots, which can function as inherent hard oxygen donor for stable radiolabeling with Zirconium-89 isotope (89 Zr). Upon simply mixing, 89 Zr can be anchored on the surface of polyethylene glycol (PEG) modified WS2 /WOx (WS2 /WOx -PEG) nanodots via a chelator-free method with surprisingly high labeling yield and great stability. A higher degree of oxidation in the WS2 /WOx -PEG sample (WS2 /WOx (0.4)) produces more electron pairs, which would be beneficial for chelator-free labeling of 89 Zr with higher yields, suggesting the importance of surface chemistry and particle composition to the efficiency of chelator-free radiolabeling. Such 89 Zr-WS2 /WOx (0.4)-PEG nanodots are found to be an excellent PET contrast agent for in vivo imaging of tumors upon intravenous administration, or mapping of draining lymph nodes after local injection.


Molecular Pharmaceutics | 2015

Targeted PDT Agent Eradicates TrkC Expressing Tumors via Photodynamic Therapy (PDT).

Chin Siang Kue; Anyanee Kamkaew; Hong Boon Lee; Lip Yong Chung; Lik Voon Kiew; Kevin Burgess

This contribution features a small molecule that binds TrkC (tropomyosin receptor kinase C) receptor that tends to be overexpressed in metastatic breast cancer cells but not in other breast cancer cells. A sensitizer for 1O2 production conjugated to this structure gives 1-PDT for photodynamic therapy. Isomeric 2-PDT does not bind TrkC and was used as a control throughout; similarly, TrkC– cancer cells were used to calibrate enhanced killing of TrkC+ cells. Ex vivo, 1- and 2-PDT where only cytotoxic when illuminated, and 1-PDT, gave higher cell death for TrkC+ breast cancer cells. A 1 h administration-to-illumination delay gave optimal TrkC+/TrkC–-photocytotoxicity, and distribution studies showed the same delay was appropriate in vivo. In Balb/c mice, a maximum tolerated dose of 20 mg/kg was determined for 1-PDT. 1- and 2-PDT (single, 2 or 10 mg/kg doses and one illumination, throughout) had similar effects on implanted TrkC– tumors, and like those of 2-PDT on TrkC+ tumors. In contrast, 1-PDT caused dramatic TrkC+ tumor volume reduction (96% from initial) relative to the TrkC– tumors or 2-PDT in TrkC+ models. Moreover, 71% of the mice treated with 10 mg/kg 1-PDT (n = 7) showed full tumor remission and survived until 90 days with no metastasis to key organs.


Molecular Pharmaceutics | 2016

ImmunoPET Imaging of Insulin-Like Growth Factor 1 Receptor in a Subcutaneous Mouse Model of Pancreatic Cancer

Christopher G. England; Anyanee Kamkaew; Hyung Jun Im; Hector F. Valdovinos; Haiyan Sun; Reinier Hernandez; Steve Y. Cho; Edward J. Dunphy; Dong Soo Lee; Todd E. Barnhart; Weibo Cai

The role of insulin-like growth factor-1 receptor (IGF-1R) in cancer tumorigenesis was established decades ago, yet there are limited studies evaluating the imaging and therapeutic properties of anti-IGF-1R antibodies. Noninvasive imaging of IGF-1R may allow for optimized patient stratification and monitoring of therapeutic response in patients. Herein, this study reports the development of a Zirconium-89 ((89)Zr)-labeled anti-IGF-1R antibody ((89)Zr-Df-1A2G11) for PET imaging of pancreatic cancer. Successful chelation and radiolabeling of the antibody resulted in a highly stable construct that could be used for imaging IGF-1R expressing tumors in vivo. Western blot and flow cytometry studies showed that MIA PaCa-2, BxPC-3, and AsPC-1 pancreatic cancer cell lines expressed high, moderate, and low levels of IGF-1R, respectively. These three pancreatic cancer cell lines were subcutaneously implanted into mice. By employing the PET imaging technique, the tumor accumulation of (89)Zr-Df-1A2G11 was found to be dependent on the level of IGF-1R expression. Tumor accumulation of (89)Zr-Df-1A2G11 was 8.24 ± 0.51, 5.80 ± 0.54, and 4.30 ± 0.42 percentage of the injected dose (%ID/g) in MIA PaCa-2, BxPC-3, and AsPC-1-derived tumor models at 120 h postinjection, respectively (n = 4). Biodistribution studies and ex vivo immunohistochemistry confirmed these findings. In addition, (89)Zr-labeled nonspecific human IgG ((89)Zr-Df-IgG) displayed minimal uptake in IGF-1R positive MIA PaCa-2 tumor xenografts (3.63 ± 0.95%ID/g at 120 h postinjection; n = 4), demonstrating that (89)Zr-Df-1A2G11 accumulation was highly specific. This study provides initial evidence that our (89)Zr-labeled IGF-1R-targeted antibody may be employed for imaging a wide range of malignancies. Antibodies may be tracked in vivo for several days to weeks with (89)Zr, which may enhance image contrast due to decreased background signal. In addition, the principles outlined in this study can be employed for identifying patients that may benefit from anti-IGF-1R therapy.


Scientific Reports | 2016

Tropomyosin Receptor Kinase C Targeted Delivery of a Peptidomimetic Ligand-Photosensitizer Conjugate Induces Antitumor Immune Responses Following Photodynamic Therapy

Chin Siang Kue; Anyanee Kamkaew; Siew Hui Voon; Lik Voon Kiew; Lip Yong Chung; Kevin Burgess; Hong Boon Lee

Tropomyosin receptor kinase C (TrkC) targeted ligand-photosensitizer construct, IYIY-diiodo-boron-dipyrromethene (IYIY-I2-BODIPY) and its scrambled counterpart YIYI-I2-BODIPY have been prepared. IYIY-I2-BODIPY binds TrkC similar to neurotrophin-3 (NT-3), and NT-3 has been reported to modulate immune responses. Moreover, it could be shown that photodynamic therapy (PDT) elevates antitumor immune responses. This prompted us to investigate the immunological impacts mediated by IYIY-I2-BODIPY in pre- and post-PDT conditions. We demonstrated that IYIY-I2-BODIPY (strong response) and YIYI-I2-BODIPY (weak response) at 10 mg/kg, but not I2-BODIPY control, increased the levels of IL-2, IL-4, IL-6 and IL-17, but decreased the levels of systemic immunoregulatory mediators TGF-β, myeloid-derived suppressor cells and regulatory T-cells. Only IYIY-I2-BODIPY enhanced the IFN-γ+ and IL-17+ T-lymphocytes, and delayed tumor growth (~20% smaller size) in mice when administrated daily for 5 days. All those effects were observed without irradiation; when irradiated (520 nm, 100 J/cm2, 160 mW/cm2) to produce PDT effects (drug-light interval 1 h), IYIY-I2-BODIPY induced stronger responses. Moreover, photoirradiated IYIY-I2-BODIPY treated mice had high levels of effector T-cells compared to controls. Adoptive transfer of immune cells from IYIY-I2-BODIPY-treated survivor mice that were photoirradiated gave significantly delayed tumor growth (~40–50% smaller size) in recipient mice. IYIY-I2-BODIPY alone and in combination with PDT modulates the immune response in such a way that tumor growth is suppressed. Unlike immunosuppressive conventional chemotherapy, IYIY-I2-BODIPY can act as an immune-stimulatory chemotherapeutic agent with potential applications in clinical cancer treatment.

Collaboration


Dive into the Anyanee Kamkaew's collaboration.

Top Co-Authors

Avatar

Weibo Cai

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Christopher G. England

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Todd E. Barnhart

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hector F. Valdovinos

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haiyan Sun

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Dawei Jiang

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge