Anyi Zhang
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anyi Zhang.
Nano Research | 2013
Mingyuan Ge; Jiepeng Rong; Xin Fang; Anyi Zhang; Yunhao Lu; Chongwu Zhou
Nanostructured silicon has generated significant excitement for use as the anode material for lithium-ion batteries; however, more effort is needed to produce nanostructured silicon in a scalable fashion and with good performance. Here, we present a direct preparation of porous silicon nanoparticles as a new kind of nanostructured silicon using a novel two-step approach combining controlled boron doping and facile electroless etching. The porous silicon nanoparticles have been successfully used as high performance lithium-ion battery anodes, with capacities around 1,400 mA·h/g achieved at a current rate of 1 A/g, and 1,000 mA·h/g achieved at 2 A/g, and stable operation when combined with reduced graphene oxide and tested over up to 200 cycles. We attribute the overall good performance to the combination of porous silicon that can accommodate large volume change during cycling and provide large surface area accessible to electrolyte, and reduced graphene oxide that can serve as an elastic and electrically conductive matrix for the porous silicon nanoparticles.Graphical abstract
ACS Nano | 2015
Yuqiang Ma; Bilu Liu; Anyi Zhang; Liang Chen; Mohammad Fathi; Chenfei Shen; Ahmad N. Abbas; Mingyuan Ge; Matthew Mecklenburg; Chongwu Zhou
Two-dimensional (2D) semiconducting monolayer transition metal dichalcogenides (TMDCs) have stimulated lots of interest because they are direct bandgap materials that have reasonably good mobility values. However, contact between most metals and semiconducting TMDCs like 2H phase WSe2 are highly resistive, thus degrading the performance of field effect transistors (FETs) fabricated with WSe2 as active channel materials. Recently, a phase engineering concept of 2D MoS2 materials was developed, with improved device performance. Here, we applied this method to chemical vapor deposition (CVD) grown monolayer 2H-WSe2 and demonstrated semiconducting-to-metallic phase transition in atomically thin WSe2. We have also shown that metallic phase WSe2 can be converted back to semiconducting phase, demonstrating the reversibility of this phase transition. In addition, we fabricated FETs based on these CVD-grown WSe2 flakes with phase-engineered metallic 1T-WSe2 as contact regions and intact semiconducting 2H-WSe2 as active channel materials. The device performance is substantially improved with metallic phase source/drain electrodes, showing on/off current ratios of 10(7) and mobilities up to 66 cm(2)/V·s for monolayer WSe2. These results further suggest that phase engineering can be a generic strategy to improve device performance for many kinds of 2D TMDC materials.
ACS Nano | 2017
Yihang Liu; Anyi Zhang; Chenfei Shen; Qingzhou Liu; Xuan Cao; Yuqiang Ma; Liang Chen; Christian Lau; Tian-Chi Chen; Fei Wei; Chongwu Zhou
Sodium-ion batteries offer an attractive option for potential low cost and large scale energy storage due to the earth abundance of sodium. Red phosphorus is considered as a high capacity anode for sodium-ion batteries with a theoretical capacity of 2596 mAh/g. However, similar to silicon in lithium-ion batteries, several limitations, such as large volume expansion upon sodiation/desodiation and low electronic conductance, have severely limited the performance of red phosphorus anodes. In order to address the above challenges, we have developed a method to deposit red phosphorus nanodots densely and uniformly onto reduced graphene oxide sheets (P@RGO) to minimize the sodium ion diffusion length and the sodiation/desodiation stresses, and the RGO network also serves as electron pathway and creates free space to accommodate the volume variation of phosphorus particles. The resulted P@RGO flexible anode achieved 1165.4, 510.6, and 135.3 mAh/g specific charge capacity at 159.4, 31878.9, and 47818.3 mA/g charge/discharge current density in rate capability test, and a 914 mAh/g capacity after 300 deep cycles in cycling stability test at 1593.9 mA/g current density, which marks a significant performance improvement for red phosphorus anodes for sodium-ion chemistry and flexible power sources for wearable electronics.
ACS Nano | 2016
Bilu Liu; Yuqiang Ma; Anyi Zhang; Liang Chen; Ahmad N. Abbas; Yihang Liu; Chenfei Shen; Haochuan Wan; Chongwu Zhou
Monolayer WSe2 is a two-dimensional (2D) semiconductor with a direct band gap, and it has been recently explored as a promising material for electronics and optoelectronics. Low field-effect mobility is the main constraint preventing WSe2 from becoming one of the competing channel materials for field-effect transistors (FETs). Recent results have demonstrated that chemical treatments can modify the electrical properties of transition metal dichalcogenides (TMDCs), including MoS2 and WSe2. Here, we report that controlled heating in air significantly improves device performance of WSe2 FETs in terms of on-state currents and field-effect mobilities. Specifically, after being heated at optimized conditions, chemical vapor deposition grown monolayer WSe2 FETs showed an average FET mobility of 31 cm(2)·V(-1)·s(-1) and on/off current ratios up to 5 × 10(8). For few-layer WSe2 FETs, after the same treatment applied, we achieved a high mobility up to 92 cm(2)·V(-1)·s(-1). These values are significantly higher than FETs fabricated using as-grown WSe2 flakes without heating treatment, demonstrating the effectiveness of air heating on the performance improvements of WSe2 FETs. The underlying chemical processes involved during air heating and the formation of in-plane heterojunctions of WSe2 and WO3-x, which is believed to be the reason for the improved FET performance, were studied by spectroscopy and transmission electron microscopy. We further demonstrated that, by combining the air heating method developed in this work with supporting 2D materials on the BN substrate, we achieved a noteworthy field-effect mobility of 83 cm(2)·V(-1)·s(-1) for monolayer WSe2 FETs. This work is a step toward controlled modification of the properties of WSe2 and potentially other TMDCs and may greatly improve device performance for future applications of 2D materials in electronics and optoelectronics.
Nano Research | 2016
Anyi Zhang; Xin Fang; Chenfei Shen; Yihang Liu; Chongwu Zhou
Li metal is considered one of the most promising candidates for the anode material in high-energy-density Li-ion batteries. However, the dendritic growth of Li metal during the plating/stripping process can severely reduce Coulombic efficiency and cause safety problems, which is a key issue limiting the application of Li metal anodes. Herein, we present a novel strategy for dendrite-free deposition of Li by modifying the Cu current collector with a three-dimensional carbon nanofiber (CNF) network. Owing to the large surface area and high conductivity of the CNF network, Li metal is inserted into and deposited onto the CNF directly, and no dendritic Li metal is observed, leaving a flat Li metal surface. With Li metal as the counter electrode for Li deposition, an average Coulombic efficiency of 99.9% was achieved for more than 300 cycles, at large current densities of 1.0 and 2.0 mA·cm−2, and with a high Li loading of 1 mAh·cm−2. The scalability of the preparation method and the impressive results achieved here demonstrate the potential for the application of our design to the future development of dendrite-free Li metal anodes.
ACS Nano | 2017
Yuqiang Ma; Chenfei Shen; Anyi Zhang; Liang Chen; Yihang Liu; Jihan Chen; Qingzhou Liu; Zhen Li; Moh. R. Amer; Tom Nilges; Ahmad N. Abbas; Chongwu Zhou
Black phosphorus (BP) has been recently rediscovered as an elemental two-dimensional (2D) material that shows promising results for next generation electronics and optoelectronics because of its intrinsically superior carrier mobility and small direct band gap. In various 2D field-effect transistors (FETs), the choice of metal contacts is vital to the device performance, and it is a major challenge to reach ultralow contact resistances for highly scaled 2D FETs. Here, we experimentally show the effect of a work function tunable metal contact on the device performance of BP FETs. Using palladium (Pd) as the contact material, we employed the reaction between Pd and H2 to form a Pd-H alloy that effectively increased the work function of Pd and reduced the Schottky barrier height (ΦB) in a BP FET. When the Pd-contacted BP FET was exposed to 5% hydrogen concentrated Ar, the contact resistance (Rc) improved between the Pd electrodes and BP from ∼7.10 to ∼1.05 Ω·mm, surpassing all previously reported contact resistances in the literature for BP FETs. Additionally, with exposure to 5% hydrogen, the transconductance of the Pd-contacted BP FET was doubled. The results shown in this study illustrate the significance of choosing the right contact material for high-performance BP FETs in order to realize the real prospect of BP in electronic applications.
Scientific Reports | 2016
Chenfei Shen; Mingyuan Ge; Langli Luo; Xin Fang; Yihang Liu; Anyi Zhang; Jiepeng Rong; Chongmin Wang; Chongwu Zhou
In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.
ACS Nano | 2017
Franziska Baumer; Yuqiang Ma; Chenfei Shen; Anyi Zhang; Liang Chen; Yihang Liu; Daniela Pfister; Tom Nilges; Chongwu Zhou
Two-dimensional (2D) nanoflakes have emerged as a class of materials that may impact electronic technologies in the near future. A challenging but rewarding work is to experimentally identify 2D materials and explore their properties. Here, we report the synthesis of a layered material, P20.56(1)Sb0.44(1), with a systematic study on characterizations and device applications. This material demonstrates a direct band gap of around 1.67 eV. Using a laser-cutting method, the thin flakes of this material can be separated into multiple segments. We have also fabricated field effect transistors based on few-layer P20.56(1)Sb0.44(1) flakes with a thickness down to a few nanometers. Interestingly, these field effect transistors show strong photoresponse within the wavelength range of visible light. At room temperature, we have achieved good mobility values (up to 58.96 cm2/V·s), a reasonably high on/off current ratio (∼103), and intrinsic responsivity up to 10 μA/W. Our results demonstrate the potential of P20.56(1)Sb0.44(1) thin flakes as a two-dimensional material for applications in visible light detectors.
ACS Nano | 2018
Yihang Liu; Qingzhou Liu; Anyi Zhang; Jiansong Cai; Xuan Cao; Zhen Li; Paul D. Asimow; Chongwu Zhou
Sodium-ion batteries offer an attractive option for grid-level energy storage due to the high natural abundance of sodium and low material cost of sodium compounds. Phosphorus (P) is a promising anode material for sodium-ion batteries, with a theoretical capacity of 2596 mAh/g. The red phosphorus (RP) form has worse electronic conductivity and lower initial Coulombic efficiency than black phosphorus (BP), but high material cost and limited production capacity have slowed the development of BP anodes. To address these challenges, we have developed a simple and scalable method to synthesize layered BP/graphene composite (BP/rGO) by pressurization at room temperature. A carbon-black-free and binder-free BP/rGO anode prepared with this method achieved specific charge capacities of 1460.1, 1401.2, 1377.6, 1339.7, 1277.8, 1123.78, and 720.8 mAh/g in a rate capability test at charge and discharge current densities of 0.1, 0.5, 1, 5, 10, 20, and 40 A/g, respectively. In a cycling performance test, after 500 deep cycles, the capacity of BP/rGO anodes stabilized at 1250 and 640 mAh/g at 1 and 40 A/g, respectively, which marks a significant performance improvement for sodium-ion battery anodes.
Nano Research | 2018
Yihang Liu; Anyi Zhang; Chenfei Shen; Qingzhou Liu; Jiansong Cai; Xuan Cao; Chongwu Zhou
Red phosphorus (RP) has attracted considerable attention as the anode for high-performance Na-ion batteries, owing to its low cost and high theoretical specific capacity of ∼ 2,600 mAh/g. In this study, a facile single-step flash-heat treatment was developed to achieve the reduction of graphene oxide (GO) and the simultaneous deposition of RP onto the reduced graphene oxide (rGO) sheets. The resulting RP/rGO composite was shown to be a promising candidate for overcoming the issues associated with the poor electronic conductivity and large volume variation of RP during cycling. The RP/rGO flexible film anode delivered an average capacity of 1,625 mAh/g during 200 cycles at a charge/discharge current density of 1 A/g. Average charge capacities of 1,786, 1,597, 1,324, and 679 mAh/g at 1, 2, 4, and 6 A/g current densities were obtained in the rate capability tests. Moreover, owing to the RP component, the RP/rGO film presented superior flame retardancy compared to an rGO film. This work thus introduces a highly accessible synthesis method to prepare flexible and safe RP anodes with superior electrochemical performance toward Na-ion storage.