Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiepeng Rong is active.

Publication


Featured researches published by Jiepeng Rong.


Nano Letters | 2012

Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life

Mingyuan Ge; Jiepeng Rong; Xin Fang; Chongwu Zhou

Porous silicon nanowires have been well studied for various applications; however, there are only very limited reports on porous silicon nanowires used for energy storage. Here, we report both experimental and theoretical studies of porous doped silicon nanowires synthesized by direct etching of boron-doped silicon wafers. When using alginate as a binder, porous silicon nanowires exhibited superior electrochemical performance and long cycle life as anode material in a lithium ion battery. Even after 250 cycles, the capacity remains stable above 2000, 1600, and 1100 mAh/g at current rates of 2, 4, and 18 A/g, respectively, demonstrating high structure stability due to the high porosity and electron conductivity of the porous silicon nanowires. A mathematic model coupling the lithium ion diffusion and the strain induced by lithium intercalation was employed to study the effect of porosity and pore size on the structure stability. Simulation shows silicon with high porosity and large pore size help to stabilize the structure during charge/discharge cycles.


Nano Research | 2013

Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes

Mingyuan Ge; Jiepeng Rong; Xin Fang; Anyi Zhang; Yunhao Lu; Chongwu Zhou

Nanostructured silicon has generated significant excitement for use as the anode material for lithium-ion batteries; however, more effort is needed to produce nanostructured silicon in a scalable fashion and with good performance. Here, we present a direct preparation of porous silicon nanoparticles as a new kind of nanostructured silicon using a novel two-step approach combining controlled boron doping and facile electroless etching. The porous silicon nanoparticles have been successfully used as high performance lithium-ion battery anodes, with capacities around 1,400 mA·h/g achieved at a current rate of 1 A/g, and 1,000 mA·h/g achieved at 2 A/g, and stable operation when combined with reduced graphene oxide and tested over up to 200 cycles. We attribute the overall good performance to the combination of porous silicon that can accommodate large volume change during cycling and provide large surface area accessible to electrolyte, and reduced graphene oxide that can serve as an elastic and electrically conductive matrix for the porous silicon nanoparticles.Graphical abstract


Nanotechnology | 2013

Review of porous silicon preparation and its application for lithium-ion battery anodes

Mingyuan Ge; Xin Fang; Jiepeng Rong; Chongwu Zhou

Silicon is of great interest for use as the anode material in lithium-ion batteries due to its high capacity. However, certain properties of silicon, such as a large volume expansion during the lithiation process and the low diffusion rate of lithium in silicon, result in fast capacity degradation in limited charge/discharge cycles, especially at high current rate. Therefore, the use of silicon in real battery applications is limited. The idea of using porous silicon, to a large extent, addresses the above-mentioned issues simultaneously. In this review, we discuss the merits of using porous silicon for anodes through both theoretical and experimental study. Recent progress in the preparation of porous silicon through the template-assisted approach and the non-template approach have been highlighted. The battery performance in terms of capacity and cyclability of each structure is evaluated.


Nano Letters | 2014

Solution ionic strength engineering as a generic strategy to coat graphene oxide (GO) on various functional particles and its application in high-performance lithium-sulfur (Li-S) batteries.

Jiepeng Rong; Mingyuan Ge; Xin Fang; Chongwu Zhou

A generic and facile method of coating graphene oxide (GO) on particles is reported, with sulfur/GO core-shell particles demonstrated as an example for lithium-sulfur (Li-S) battery application with superior performance. Particles of different diameters (ranging from 100 nm to 10 μm), geometries, and compositions (sulfur, silicon, and carbon) are successfully wrapped up by GO, by engineering the ionic strength in solutions. Importantly, our method does not involve any chemical reaction between GO and the wrapped particles, and therefore, it can be extended to vast kinds of functional particles. The applications of sulfur/GO core-shell particles as Li-S battery cathode materials are further investigated, and the results show that sulfur/GO exhibit significant improvements over bare sulfur particles without coating. Galvanic charge-discharge test using GO/sulfur particles shows a specific capacity of 800 mAh/g is retained after 1000 cycles at 1 A/g current rate if only the mass of sulfur is taken into calculation, and 400 mAh/g if the total mass of sulfur/GO is considered. Most importantly, the capacity decay over 1000 cycles is less than 0.02% per cycle. The coating method developed in this study is facile, robust, and versatile and is expected to have wide range of applications in improving the properties of particle materials.


Journal of Materials Chemistry | 2013

Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high energy density and long cycle life

Xin Fang; Mingyuan Ge; Jiepeng Rong; Chongwu Zhou

Lithium ion batteries are receiving enormous attention as power sources and energy storage devices in the renewable energy field. With the ever increasing demand for higher energy and power density, high voltage cathodes have emerged as an important option for new generation batteries. Here, we report graphene-oxide-coated LiNi0.5Mn1.5O4 as a high voltage cathode and demonstrate that the batteries showed superior cycling performance for up to 1000 cycles. Mildly oxidized graphene oxide coating was found to improve the battery performance by enhancing the conductivity and protecting the cathode surface from undesired reactions with the electrolyte. As a result, the graphene-oxide-coated high voltage cathode LiNi0.5Mn1.5O4 showed 61% capacity retention after 1000 cycles in the cycling test, which converts to only 0.039% capacity decay per cycle. At large current rates of 5 C, 7 C and 10 C, the batteries were able to deliver 77%, 66% and 56% of the 1 C capacity, respectively (1 C = 140 mA g−1). In contrast, the LiNi0.5Mn1.5O4 cathode without graphene oxide coating showed 88.7% capacity retention after only 100 cycles. The promising results demonstrated the potential of developing high energy density batteries with the high voltage cathode LiNi0.5Mn1.5O4 and improving the battery performance by surface modification with mildly oxidized graphene oxide.


ACS Nano | 2014

Free-Standing LiNi0.5Mn1.5O4/Carbon Nanofiber Network Film as Lightweight and High-Power Cathode for Lithium Ion Batteries

Xin Fang; Mingyuan Ge; Jiepeng Rong; Chongwu Zhou

Lightweight and high-power LiNi0.5Mn1.5O4/carbon nanofiber (CNF) network electrodes are developed as a high-voltage cathode for lithium ion batteries. The LiNi0.5Mn1.5O4/CNF network electrodes are free-standing and can be used as a cathode without using any binder, carbon black, or metal current collector, and hence the total weight of the electrode is highly reduced while keeping the same areal loading of active materials. Compared with conventional electrodes, the LiNi0.5Mn1.5O4/CNF network electrodes can yield up to 55% reduction in total weight and 2.2 times enhancement in the weight percentage of active material in the whole electrode. Moreover, the LiNi0.5Mn1.5O4/carbon nanofiber (CNF) network electrodes showed excellent current rate capability in the large-current test up to 20C (1C = 140 mAh/g), when the conventional electrodes showed almost no capacity at the same condition. Further analysis of polarization resistance confirmed the favorable conductivity from the CNF network compared with the conventional electrode structure. By reducing the weight, increasing the working voltage, and improving the large-current rate capability simultaneously, the LiNi0.5Mn1.5O4/CNF electrode structure can highly enhance the energy/power density of lithium ion batteries and thus holds great potential to be used with ultrathin, ultralight electronic devices as well as electric vehicles and hybrid electric vehicles.


Nano Research | 2013

Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes

Jiepeng Rong; Xin Fang; Mingyuan Ge; Haitian Chen; Jing Xu; Chongwu Zhou

Silicon (Si) has the highest known theoretical specific capacity (3,590 mAh/g for Li15Si4, and 4,200 mAh/g for Li22Si4) as a lithium-ion battery anode, and has attracted extensive interest in the past few years. However, its application is limited by poor cyclability and early capacity fading due to significant volume changes during lithiation and delithiation processes. In this work, we report a coaxial silicon/anodic titanium oxide/silicon (Si-ATO-Si) nanotube array structure grown on a titanium substrate demonstrating excellent electrochemical cyclability. The ATO nanotube scaffold used for Si deposition has many desirable features, such as a rough surface for enhanced Si adhesion, and direct contact with the Ti substrate working as current collector. More importantly, our ATO scaffold provides a rather unique advantage in that Si can be loaded on both the inner and outer surfaces, and an inner pore can be retained to provide room for Si volume expansion. This coaxial structure shows a capacity above 1,500 mAh/g after 100 cycles, with less than 0.05% decay per cycle. Simulations show that this improved performance can be attributed to the lower stress induced on Si layers upon lithiation/delithiation compared with some other recently reported Si-based nanostructures.Graphical abstract


Scientific Reports | 2016

In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures

Chenfei Shen; Mingyuan Ge; Langli Luo; Xin Fang; Yihang Liu; Anyi Zhang; Jiepeng Rong; Chongmin Wang; Chongwu Zhou

In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.


Nanotechnology | 2015

Capacity retention behavior and morphology evolution of SixGe1−x nanoparticles as lithium-ion battery anode

Mingyuan Ge; Seongbeom Kim; Anmin Nie; Reza Shahbazian-Yassar; Matthew Mecklenburg; Yunhao Lu; Xin Fang; Chenfei Shen; Jiepeng Rong; Song Yi Park; Dong Suk Kim; Jin Young Kim; Chongwu Zhou

Engineering silicon into nanostructures has been a well-adopted strategy to improve the cyclic performance of silicon as a lithium-ion battery anode. Here, we show that the electrode performance can be further improved by alloying silicon with germanium. We have evaluated the electrode performance of SixGe1-x nanoparticles (NPs) with different compositions. Experimentally, SixGe1-x NPs with compositions approaching Si50Ge50 are found to have better cyclic retention than both Si-rich and Ge-rich NPs. During the charge/discharge process, NP merging and Si-Ge homogenization are observed. In addition, a distinct morphology difference is observed after 100 cycles, which is believed to be responsible for the different capacity retention behavior. The present study on SixGe1-x alloy NPs sheds light on the development of Si-based electrode materials for stable operation in lithium-ion batteries (e.g., through a comprehensive design of material structure and chemical composition). The investigation of composition-dependent morphology evolution in the delithiated Li-SiGe ternary alloy also significantly broadens our understanding of dealloying in complex systems, and it is complementary to the well-established understanding of dealloying behavior in binary systems (e.g., Au-Ag alloys).


Nano Letters | 2014

Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon

Mingyuan Ge; Yunhao Lu; Peter Ercius; Jiepeng Rong; Xin Fang; Matthew Mecklenburg; Chongwu Zhou

Collaboration


Dive into the Jiepeng Rong's collaboration.

Top Co-Authors

Avatar

Mingyuan Ge

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Xin Fang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Chongwu Zhou

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Anyi Zhang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Yihang Liu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Chenfei Shen

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Matthew Mecklenburg

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Noppadol Aroonyadet

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Xiaoli Wang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Yuchi Che

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge