Aparna C. Ranganathan
University at Albany, SUNY
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aparna C. Ranganathan.
Cancer Research | 2006
Aparna C. Ranganathan; Lin Zhang; Alejandro P. Adam; Julio A. Aguirre-Ghiso
It has been proposed that occult, disseminated metastatic cells are refractory to chemotherapy due to lack of proliferation. We have shown that p38 activation induces dormancy of squamous carcinoma cells. We now show that p38 signaling in these cells activates a prosurvival mechanism via the up-regulation of the endoplasmic reticulum (ER) chaperone BiP and increased activation of the ER stress-activated eukaryotic translation initiator factor 2alpha kinase RNA-dependent protein kinase-like ER kinase (PERK) allowing dormant tumor cells to resist drug toxicity. RNA interference and dominant-negative expression studies revealed that both BiP and PERK signaling promote survival and drug resistance of dormant cells, and that BiP up-regulation prevents Bax activation. We propose that stress-dependent activation of p38 via BiP up-regulation and PERK activation protects dormant tumor cells from stress insults, such as chemotherapy.
Cancer Research | 2009
Alejandro P. Adam; Ajish D. George; Denis M. Schewe; Paloma Bragado; Bibiana V. Iglesias; Aparna C. Ranganathan; Antonis Kourtidis; Douglas S. Conklin; Julio A. Aguirre-Ghiso
The stress-activated kinase p38 plays key roles in tumor suppression and induction of tumor cell dormancy. However, the mechanisms behind these functions remain poorly understood. Using computational tools, we identified a transcription factor (TF) network regulated by p38alpha/beta and required for human squamous carcinoma cell quiescence in vivo. We found that p38 transcriptionally regulates a core network of 46 genes that includes 16 TFs. Activation of p38 induced the expression of the TFs p53 and BHLHB3, while inhibiting c-Jun and FoxM1 expression. Furthermore, induction of p53 by p38 was dependent on c-Jun down-regulation. Accordingly, RNAi down-regulation of BHLHB3 or p53 interrupted tumor cell quiescence, while down-regulation of c-Jun or FoxM1 or overexpression of BHLHB3 in malignant cells mimicked the onset of quiescence. Our results identify components of the regulatory mechanisms driving p38-induced cancer cell quiescence. These may regulate dormancy of residual disease that usually precedes the onset of metastasis in many cancers.
Cell Cycle | 2006
Aparna C. Ranganathan; Alejandro P. Adam; Julio A. Aguirre-Ghiso
Cancer dormancy is a poorly understood stage of cancer progression. However, the ability to control this step of the disease offers novel therapeutic opportunities. Here we summarize recent findings that implicate the extracellular matrix and adhesion receptor signaling in the escape or induction of tumor dormancy. We further review evidence suggesting that imbalances in the activity ratio of ERK to p38 signaling may determine the fate (i.e. tumorigenicity vs. dormancy) of different carcinoma cells. Special attention is placed on the mechanisms that p38 signaling regulates during the induction of dormancy and how modulation of these pathways may offer a therapeutic opportunity. We also review evidence for a novel drug-resistance mechanism in dormant tumor cells that when blocked may enable killing of dormant tumor cells. Finally, we explore the notion that dormancy of tumor cells may be the result of a selective adaptive response that allows disseminated tumor cells to pause their growth and cope with stress signaling imposed by dissemination and/or treatment until growth can be restored.
Cancer Research | 2008
Aparna C. Ranganathan; Shishir Ojha; Antonis Kourtidis; Douglas S. Conklin; Julio A. Aguirre-Ghiso
Pancreatic endoplasmic reticulum kinase (PERK)-eIF2 alpha signaling, a component of the endoplasmic reticulum (ER) stress response, has been proposed as a therapeutic target due to its importance to cell survival in hypoxic tumors. In this study, we show that in addition to promoting survival, PERK can also suppress tumor growth of advanced carcinomas. Our results show that in squamous carcinoma T-HEp3 cells, which display low PERK-eIF2 alpha signaling, inducible activation of an Fv2E-PERK fusion protein results in a strong G(0)-G(1) arrest in vitro. Most importantly, Fv2E-PERK activation, in addition to promoting survival in vitro, inhibits T-HEp3 and SW620 colon carcinoma growth in vivo. Increased PERK activation is linked to enhanced p-eIF2 alpha levels, translational repression, and a decrease in Ki67, pH 3, and cycD1/D3 levels, but not to changes in angiogenesis or apoptosis. Experimental reduction of PERK activity, or overexpression of GADD34 in a spontaneously arising in vivo quiescent variant of HEp3 cells that displays strong basal PERK-eIF2 alpha activation, reverts their quiescent phenotype. We conclude that the growth-inhibitory function of PERK is preserved in tumors and upon proper reactivation can severely inhibit tumor growth through induction of quiescence. This is an important consideration in the development of PERK-based therapies, as its inhibition may facilitate the proliferation of slow-cycling or dormant tumor cells.
PLOS ONE | 2007
Sharon J. Sequeira; Aparna C. Ranganathan; Alejandro P. Adam; Bibiana V. Iglesias; Eduardo F. Farias; Julio A. Aguirre-Ghiso
Endoplasmic reticulum (ER) stress signaling can be mediated by the ER kinase PERK, which phosphorylates its substrate eIF2α. This in turn, results in translational repression and the activation of downstream programs that can limit cell growth through cell cycle arrest and/or apoptosis. These responses can also be initiated by perturbations in cell adhesion. Thus, we hypothesized that adhesion-dependent regulation of PERK signaling might determine cell fate. We tested this hypothesis in a model of mammary acini development, a morphogenetic process regulated in part by adhesion signaling. Here we report a novel role for PERK in limiting MCF10A mammary epithelial cell proliferation during acinar morphogenesis in 3D Matrigel culture as well as in preventing mammary tumor formation in vivo. We show that loss of adhesion to a suitable substratum induces PERK-dependent phosphorylation of eIF2α and selective upregulation of ATF4 and GADD153. Further, inhibition of endogenous PERK signaling during acinar morphogenesis, using two dominant-negative PERK mutants (PERK-ΔC or PERK-K618A), does not affect apoptosis but results instead in hyper-proliferative and enlarged lumen-filled acini, devoid of proper architecture. This phenotype correlated with an adhesion-dependent increase in translation initiation, Ki67 staining and upregulation of Laminin-5, ErbB1 and ErbB2 expression. More importantly, the MCF10A cells expressing PERKΔC, but not a vector control, were tumorigenic in vivo upon orthotopic implantation in denuded mouse mammary fat pads. Our results reveal that the PERK pathway is responsive to adhesion-regulated signals and that it is essential for proper acinar morphogenesis and in preventing mammary tumor formation. The possibility that deficiencies in PERK signaling could lead to hyperproliferation of the mammary epithelium and increase the likelihood of tumor formation, is of significance to the understanding of breast cancer.
Cancer Biology & Therapy | 2006
Aparna C. Ranganathan; Alejandro P. Adam; Lin Zhang; Julio A. Aguirre-Ghiso
The mechanisms that determine whether a tumor cell that has disseminated to a secondary site will resume growth immediately, die or enter a state of dormancy are poorly understood. Although tumor dormancy represents a common clinical finding, studying the mechanisms behind this stage of tumor progression has been challenging. Furthermore, it is thought that dormant tumor cells are refractory to chemotherapy due to their lack of proliferation. However, whether this is the only reason for their chemo-resistance remains to be proven. In this review we summarize recent findings that provide a mechanistic explanation about how stress signaling through the p38SAPK pathway and ER-stress signaling may coordinate the induction of growth arrest and drug-resistance in a model of squamous carcinoma dormancy. We further discuss how dormant tumor cells may enter this stage to adapt to strenuous conditions that do not favor immediate growth after dissemination. Finally, we propose that this response may recapitulate an evolutionary conserved program of life-span extension through adaptation and tolerance to stress.
PLOS ONE | 2012
Paloma Bragado; Yeriel Estrada; Maria Soledad Sosa; Alvaro Avivar-Valderas; David Cannan; Eric M. Genden; Marita Teng; Aparna C. Ranganathan; Huei-Chi Wen; Avnish Kapoor; Emily Bernstein; Julio A. Aguirre-Ghiso
Head and neck squamous carcinoma (HNSCC) tumors carry dismal long-term prognosis and the role of tumor initiating cells (TICs) in this cancer is unclear. We investigated in HNSCC xenografts whether specific tumor subpopulations contributed to tumor growth. We used a CFSE-based label retentions assay, CD49f (α6-integrin) surface levels and aldehyde dehydrogenase (ALDH) activity to profile HNSCC subpopulations. The tumorigenic potential of marker-positive and -negative subpopulations was tested in nude (Balb/c nu/nu) and NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice and chicken embryo chorioallantoic membrane (CAM) assays. Here we identified in HEp3, SQ20b and FaDu HNSCC xenografts a subpopulation of G0/G1-arrested slow-cycling CD49fhigh/ALDH1A1high/H3K4/K27me3low subpopulation (CD49f+) of tumor cells. A strikingly similar CD49fhigh/H3K27me3low subpopulation is also present in primary human HNSCC tumors and metastases. While only sorted CD49fhigh/ALDHhigh, label retaining cells (LRC) proliferated immediately in vivo, with time the CD49flow/ALDHlow, non-LRC (NLRC) tumor cell subpopulations were also able to regain tumorigenic capacity; this was linked to restoration of CD49fhigh/ALDHhigh, label retaining cells. In addition, CD49f is required for HEp3 cell tumorigenicity and to maintain low levels of H3K4/K27me3. CD49f+ cells also displayed reduced expression of the histone-lysine N-methyltransferase EZH2 and ERK1/2phosphorylation. This suggests that although transiently quiescent, their unique chromatin structure is poised for rapid transcriptional activation. CD49f− cells can “reprogram” and also achieve this state eventually. We propose that in HNSCC tumors, epigenetic mechanisms likely driven by CD49f signaling dynamically regulate HNSCC xenograft phenotypic heterogeneity. This allows multiple tumor cell subpopulations to drive tumor growth suggesting that their dynamic nature renders them a “moving target” and their eradication might require more persistent strategies.
Archive | 2010
Paloma Bragado; Aparna C. Ranganathan; Julio A. Aguirre-Ghiso
Majority of cancer patients will die of metastases that develop from disseminated tumor cells (DTCs), months, years, or even decades after treatment. This pause in cancer progression suggests that, during these disease-free periods, DTCs may stop proliferating and survive in a dormant state. The mechanisms that determine whether tumor cells, after disseminating to target organs, will continue to proliferate, die or enter a protracted state of dormancy are poorly understood. Here, we review the different manifestations of dormancy and the experimental and clinical evidence supporting that the target organ microenvironment where DTCs lodge might influence the choice to enter dormancy. We also review the available animal models to study DTCs dormancy. This information is important to design strategies to maintain dormancy of DTCs or eradicate DTCs before they progress to overt metastasis. Such information would lead to anti-metastatic and/or metastasis preventive therapies which are urgently needed.
Cancer Research | 2006
Aparna C. Ranganathan; Lin Zhang; Alejandro P. Adam; Julio A. Aguirre-Ghiso
Loss of RUNX3 expression is suggested to be causally related to gastric cancer as 45% to 60% of gastric cancers do not express RUNX3 mainly due to hypermethylation of the RUNX3 promoter. Here, we examined for other defects in the properties of RUNX3 in gastric cancers that express RUNX3. Ninety-seven gastric cancer tumor specimens and 21 gastric cancer cell lines were examined by immunohistochemistry using novel anti-RUNX3 monoclonal antibodies. In normal gastric mucosa, RUNX3 was expressed most strongly in the nuclei of chief cells as well as in surface epithelial cells. In chief cells, a significant portion of the protein was also found in the cytoplasm. RUNX3 was not detectable in 43 of 97 (44%) cases of gastric cancers tested and a further 38% showed exclusive cytoplasmic localization, whereas only 18% showed nuclear localization. Evidence is presented suggesting that transforming growth factor-beta is an inducer of nuclear translocation of RUNX3, and RUNX3 in the cytoplasm of cancer cells is inactive as a tumor suppressor. RUNX3 was found to be inactive in 82% of gastric cancers through either gene silencing or protein mislocalization to the cytoplasm. In addition to the deregulation of mechanisms controlling gene expression, there would also seem to be at least one other mechanism controlling nuclear translocation of RUNX3 that is impaired frequently in gastric cancer.
Methods of Molecular Biology | 2007
Timothy E. Baroni; Michele T. Lastro; Aparna C. Ranganathan; Scott A. Tenenbaum; Douglas S. Conklin; Julio A. Aguirre-Ghiso