Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aram Wettroth Harrow is active.

Publication


Featured researches published by Aram Wettroth Harrow.


Physical Review Letters | 2009

Quantum Algorithm for Linear Systems of Equations

Aram Wettroth Harrow; Avinatan Hassidim; Seth Lloyd

Solving linear systems of equations is a common problem that arises both on its own and as a subroutine in more complex problems: given a matrix A and a vector b(-->), find a vector x(-->) such that Ax(-->) = b(-->). We consider the case where one does not need to know the solution x(-->) itself, but rather an approximation of the expectation value of some operator associated with x(-->), e.g., x(-->)(dagger) Mx(-->) for some matrix M. In this case, when A is sparse, N x N and has condition number kappa, the fastest known classical algorithms can find x(-->) and estimate x(-->)(dagger) Mx(-->) in time scaling roughly as N square root(kappa). Here, we exhibit a quantum algorithm for estimating x(-->)(dagger) Mx(-->) whose runtime is a polynomial of log(N) and kappa. Indeed, for small values of kappa [i.e., poly log(N)], we prove (using some common complexity-theoretic assumptions) that any classical algorithm for this problem generically requires exponentially more time than our quantum algorithm.


IEEE Transactions on Information Theory | 2008

A Resource Framework for Quantum Shannon Theory

Igor Devetak; Aram Wettroth Harrow; Andreas Winter

Quantum Shannon theory is loosely defined as a collection of coding theorems, such as classical and quantum source compression, noisy channel coding theorems, entanglement distillation, etc., which characterize asymptotic properties of quantum and classical channels and states. In this paper, we advocate a unified approach to an important class of problems in quantum Shannon theory, consisting of those that are bipartite, unidirectional, and memoryless.


Physical Review Letters | 2002

Practical Scheme for Quantum Computation with Any Two-Qubit Entangling Gate

Michael J. Bremner; Christopher M. Dawson; Jennifer L. Dodd; Alexei Gilchrist; Aram Wettroth Harrow; Duncan Mortimer; Michael A. Nielsen; Tobias J. Osborne

Which gates are universal for quantum computation? Although it is well known that certain gates on two-level quantum systems (qubits), such as the controlled-not, are universal when assisted by arbitrary one-qubit gates, it has only recently become clear precisely what class of two-qubit gates is universal in this sense. We present an elementary proof that any entangling two-qubit gate is universal for quantum computation, when assisted by one-qubit gates. A proof of this result for systems of arbitrary finite dimension has been provided by Brylinski and Brylinski; however, their proof relies on a long argument using advanced mathematics. In contrast, our proof provides a simple constructive procedure which is close to optimal and experimentally practical.


IEEE Transactions on Information Theory | 2014

The Quantum Reverse Shannon Theorem and Resource Tradeoffs for Simulating Quantum Channels

Charles H. Bennett; Igor Devetak; Aram Wettroth Harrow; Peter W. Shor; Andreas Winter

Dual to the usual noisy channel coding problem, where a noisy (classical or quantum) channel is used to simulate a noiseless one, reverse Shannon theorems concern the use of noiseless channels to simulate noisy ones, and more generally the use of one noisy channel to simulate another. For channels of nonzero capacity, this simulation is always possible, but for it to be efficient, auxiliary resources of the proper kind and amount are generally required. In the classical case, shared randomness between sender and receiver is a sufficient auxiliary resource, regardless of the nature of the source, but in the quantum case the requisite auxiliary resources for efficient simulation depend on both the channel being simulated, and the source from which the channel inputs are coming. For tensor power sources (the quantum generalization of classical IID sources), entanglement in the form of standard ebits (maximally entangled pairs of qubits) is sufficient, but for general sources, which may be arbitrarily correlated or entangled across channel inputs, additional resources, such as entanglement-embezzling states or backward communication, are generally needed. Combining existing and new results, we establish the amounts of communication and auxiliary resources needed in both the classical and quantum cases, the tradeoffs among them, and the loss of simulation efficiency when auxiliary resources are absent or insufficient. In particular we find a new single-letter expression for the excess forward communication cost of coherent feedback simulations of quantum channels (i.e. simulations in which the sender retains what would escape into the environment in an ordinary simulation), on non-tensor-power sources in the presence of unlimited ebits but no other auxiliary resource. Our results on tensor power sources establish a strong converse to the entanglement-assisted capacity theorem.Dual to the usual noisy channel coding problem, where a noisy (classical or quantum) channel is used to simulate a noiseless one, reverse Shannon theorems concern the use of noiseless channels to simulate noisy ones, and more generally the use of one noisy channel to simulate another. For channels of nonzero capacity, this simulation is always possible, but for it to be efficient, auxiliary resources of the proper kind and amount are generally required. In the classical case, shared randomness between sender and receiver is a sufficient auxiliary resource, regardless of the nature of the source, but in the quantum case, the requisite auxiliary resources for efficient simulation depend on both the channel being simulated, and the source from which the channel inputs are coming. For tensor power sources (the quantum generalization of classical memoryless sources), entanglement in the form of standard ebits (maximally entangled pairs of qubits) is sufficient, but for general sources, which may be arbitrarily correlated or entangled across channel inputs, additional resources, such as entanglement-embezzling states or backward communication, are generally needed. Combining existing and new results, we establish the amounts of communication and auxiliary resources needed in both the classical and quantum cases, the tradeoffs among them, and the loss of simulation efficiency when auxiliary resources are absent or insufficient. In particular, we find a new single-letter expression for the excess forward communication cost of coherent feedback simulations of quantum channels (i.e., simulations in which the sender retains what would escape into the environment in an ordinary simulation), on nontensor-power sources in the presence of unlimited ebits but no other auxiliary resource. Our results on tensor power sources establish a strong converse to the entanglement-assisted capacity theorem.


Physical Review Letters | 2004

Superdense Coding of Quantum States

Aram Wettroth Harrow; Patrick Hayden; Debbie W. Leung

We describe a method for nonobliviously communicating a 2l-qubit quantum state by physically transmitting l+o(l) qubits, and by consuming l ebits of entanglement plus some shared random bits. In the nonoblivious scenario, the sender has a classical description of the state to be communicated. Our method can be used to communicate states that are pure or entangled with the senders system; l+o(l) and 3l+o(l) shared random bits are sufficient, respectively.


Physical Review A | 2004

Arbitrarily accurate composite pulse sequences

Kenneth R. Brown; Aram Wettroth Harrow; Isaac L. Chuang

Systematic errors in quantum operations can be the dominating source of imperfection in achieving control over quantum systems. This problem, which has been well studied in nuclear magnetic resonance, can be addressed by replacing single operations with composite sequences of pulsed operations, which cause errors to cancel by symmetry. Remarkably, this can be achieved without knowledge of the amount of error epsilon. Independent of the initial state of the system, current techniques allow the error to be reduced to O(epsilon^3). Here, we extend the composite pulse technique to cancel errors to O(epsilon^n), for arbitrary n.


Communications in Mathematical Physics | 2009

Random Quantum Circuits are Approximate 2-designs

Aram Wettroth Harrow; Richard A. Low

Given a universal gate set on two qubits, it is well known that applying random gates from the set to random pairs of qubits will eventually yield an approximately Haar-distributed unitary. However, this requires exponential time. We show that random circuits of only polynomial length will approximate the first and second moments of the Haar distribution, thus forming approximate 1- and 2-designs. Previous constructions required longer circuits and worked only for specific gate sets. As a corollary of our main result, we also improve previous bounds on the convergence rate of random walks on the Clifford group.


Physical Review A | 2003

Quantum dynamics as a physical resource

Michael A. Nielsen; Christopher M. Dawson; Jennifer L. Dodd; Alexei Gilchrist; Duncan Mortimer; Tobias J. Osborne; Michael J. Bremner; Aram Wettroth Harrow; Andrew P. Hines

How useful is a quantum dynamical operation for quantum information processing? Motivated by this question, we investigate several strength measures quantifying the resources intrinsic to a quantum operation. We develop a general theory of such strength measures, based on axiomatic considerations independent of state-based resources. The power of this theory is demonstrated with applications to quantum communication complexity, quantum computational complexity, and entanglement generation by unitary operations.


IEEE Transactions on Information Theory | 2003

On the capacities of bipartite Hamiltonians and unitary gates

Charles H. Bennett; Aram Wettroth Harrow; Debbie W. Leung; John A. Smolin

We consider interactions as bidirectional channels. We investigate the capacities for interaction Hamiltonians and nonlocal unitary gates to generate entanglement and transmit classical information. We give analytic expressions for the entanglement generating capacity and entanglement-assisted one-way classical communication capacity of interactions, and show that these quantities are additive, so that the asymptotic capacities equal the corresponding 1-shot capacities. We give general bounds on other capacities, discuss some examples, and conclude with some open questions.


Journal of the ACM | 2013

Testing Product States, Quantum Merlin-Arthur Games and Tensor Optimization

Aram Wettroth Harrow; Ashley Montanaro

We give a test that can distinguish efficiently between product states of n quantum systems and states that are far from product. If applied to a state |ψ⟩ whose maximum overlap with a product state is 1 − ε, the test passes with probability 1 − Θ(ε), regardless of n or the local dimensions of the individual systems. The test uses two copies of |ψ⟩. We prove correctness of this test as a special case of a more general result regarding stability of maximum output purity of the depolarizing channel. A key application of the test is to quantum Merlin-Arthur games with multiple Merlins, where we obtain several structural results that had been previously conjectured, including the fact that efficient soundness amplification is possible and that two Merlins can simulate many Merlins: QMA(k) = QMA(2) for k ≥ 2. Building on a previous result of Aaronson et al., this implies that there is an efficient quantum algorithm to verify 3-SAT with constant soundness, given two unentangled proofs of Õ(√n) qubits. We also show how QMA(2) with log-sized proofs is equivalent to a large number of problems, some related to quantum information (such as testing separability of mixed states) as well as problems without any apparent connection to quantum mechanics (such as computing injective tensor norms of 3-index tensors). As a consequence, we obtain many hardness-of-approximation results, as well as potential algorithmic applications of methods for approximating QMA(2) acceptance probabilities. Finally, our test can also be used to construct an efficient test for determining whether a unitary operator is a tensor product, which is a generalization of classical linearity testing.

Collaboration


Dive into the Aram Wettroth Harrow's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isaac L. Chuang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Winter

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Xiaodi Wu

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Toby S. Cubitt

University College London

View shared research outputs
Top Co-Authors

Avatar

Anand Natarajan

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge