Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arata Tomiyama is active.

Publication


Featured researches published by Arata Tomiyama.


Stem Cells | 2010

Crosstalk Between the PI3K/mTOR and MEK/ERK Pathways Involved in the Maintenance of Self-Renewal and Tumorigenicity of Glioblastoma Stem-Like Cells

Jun Sunayama; Kenichiro Matsuda; Atsushi Sato; Ken Tachibana; Kaori Suzuki; Yoshitaka Narita; Soichiro Shibui; Kaori Sakurada; Takamasa Kayama; Arata Tomiyama; Chifumi Kitanaka

The molecular signaling pathways orchestrating the biology of cancer stem‐like cells (CSLCs), including glioblastoma, remain to be elucidated. We investigated in this study the role of the MEK/extracellular signal‐regulated kinase (ERK) pathway in the control of self‐renewal and tumorigenicity of glioblastoma CSLCs, particularly in relation to the PI3K/mTOR (mammalian target of rapamycin) pathway. Targeted inactivation of MEK alone using pharmacological inhibitors or siRNAs resulted in reduced sphere formation of both cell line‐ and patient‐derived glioblastoma CSLCs, accompanied by their differentiation into neuronal and glial lineages. Interestingly, this effect of MEK inactivation was apparently augmented in the presence of NVP‐BEZ235, a dual inhibitor of PI3K and mTOR. As a potential explanation for this observed synergy, we found that inactivation of either the MEK/ERK or PI3K/mTOR pathway triggered activation of the other, suggesting that there may be mutually inhibitory crosstalk between these two pathways. Significantly, inactivation of either pathway led to the reduced activation of p70S6K, and siRNA‐mediated knockdown of p70S6K resulted in the activation of both pathways, which no longer maintained the cross‐inhibitory relationship. Finally, combinational blockade of both pathways in glioblastoma CSLCs suppressed their tumorigenicity, whether transplanted subcutaneously or intracranially, more efficiently than blockade of either alone. Our findings suggest that there is p70S6K‐mediated, cross‐inhibitory regulation between the MEK/ERK and PI3K/mTOR pathways, in which each contribute to the maintenance of the self‐renewal and tumorigenic capacity of glioblastoma CSLCs. Thus, combinational disruption of these pathways would be a rational and effective strategy in the treatment of glioblastoma. STEM CELLS 2010;28:1930–1939


Neuro-oncology | 2010

Dual blocking of mTor and PI3K elicits a prodifferentiation effect on glioblastoma stem-like cells

Jun Sunayama; Atsushi Sato; Kenichiro Matsuda; Ken Tachibana; Kaori Suzuki; Yoshitaka Narita; Soichiro Shibui; Kaori Sakurada; Takamasa Kayama; Arata Tomiyama; Chifumi Kitanaka

Glioblastoma, the most intractable cerebral tumor, is highly lethal. Recent studies suggest that cancer stem-like cells (CSLCs) have the capacity to repopulate tumors and mediate radio- and chemoresistance, implying that future therapies may need to turn from the elimination of rapidly dividing, but differentiated, tumor cells to specifically targeting the minority of tumor cells that repopulate the tumor. However, the mechanism by which glioblastoma CSLCs maintain their immature stem-like state or, alternatively, become committed to differentiation is poorly understood. Here, we show that the inactivation of mammalian target of rapamycin (mTor) by the mTor inhibitor rapamycin or knockdown of mTor reduced sphere formation and the expression of neural stem cell (NSC)/progenitor markers in CSLCs of the A172 glioblastoma cell line. Interestingly, combination treatment with rapamycin and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, not only reduced the expression of NSC/progenitor markers more efficiently than single-agent treatment, but also increased the expression of βIII-tubulin, a neuronal differentiation marker. Consistent with these results, a dual PI3K/mTor inhibitor, NVP-BEZ235, elicited a prodifferentiation effect on A172 CSLCs. Moreover, A172 CSLCs, which were induced to undergo differentiation by pretreatment with NVP-BEZ235, exhibited a significant decrease in their tumorigenicity when transplanted either subcutaneously or intracranially. Importantly, similar results were obtained when patient-derived glioblastoma CSLCs were used. These findings suggest that the PI3K/mTor signaling pathway is critical for the maintenance of glioblastoma CSLC properties, and targeting both mTor and PI3K of CSLCs may be an effective therapeutic strategy in glioblastoma.


Cell Death & Differentiation | 2004

Physical and functional interaction between BH3-only protein Hrk and mitochondrial pore-forming protein p32.

Jun Sunayama; Y Ando; N Itoh; Arata Tomiyama; Kaori Sakurada; A Sugiyama; Dongchon Kang; F Tashiro; Yukiko Gotoh; Yoshiyuki Kuchino; Chifumi Kitanaka

AbstractBcl-2 homology domain (BH) 3-only proteins of the proapoptotic Bcl-2 subfamily play a key role as initiators of mitochondria-dependent apoptosis. To date, at least 10 mammalian BH3-only proteins have been identified, and it is now being realized that they have different roles and mechanisms of regulation in the transduction of apoptotic signals to mitochondria. Hrk/DP5 is one of the mammalian BH3-only proteins implicated in a variety of physiological and pathological apoptosis, yet the molecular mechanism involved in Hrk-mediated apoptosis remains poorly understood. In an attempt to identify cellular proteins participating in Hrk-mediated apoptosis, we have conducted yeast two-hybrid screening for Hrk-interacting proteins and isolated p32, a mitochondrial protein that has been shown to form a channel consisting of its homotrimer. In vitro binding, co-immunoprecipitation, as well as immunocytochemical analyses verified specific interaction and colocalization of Hrk and p32, both of which depended on the presence of the highly conserved C-terminal region of p32. Importantly, Hrk-induced apoptosis was suppressed by the expression of p32 mutants lacking the N-terminal mitochondrial signal sequence (p32(74–282)) and the conserved C-terminal region (p32 (1–221)), which are expected to inhibit binding of Hrk competitively to the endogenous p32 protein and to disrupt the channel function of p32, respectively. Furthermore, small interfering RNA-mediated knockdown of p32 conferred protection against Hrk-induced apoptosis. Altogether, these results suggest that p32 may be a key molecule that links Hrk to mitochondria and is critically involved in the regulation of Hrk-mediated apoptosis.


Stem Cells | 2011

MEK‐ERK Signaling Dictates DNA‐Repair Gene MGMT Expression and Temozolomide Resistance of Stem‐Like Glioblastoma Cells via the MDM2‐p53 Axis

Atsushi Sato; Jun Sunayama; Kenichiro Matsuda; Shizuka Seino; Kaori Suzuki; Eriko Watanabe; Ken Tachibana; Arata Tomiyama; Takamasa Kayama; Chifumi Kitanaka

Overcoming the resistance of glioblastoma cells against temozolomide, the first‐line chemotherapeutic agent of choice for newly diagnosed glioblastoma, is a major therapeutic challenge in the management of this deadly brain tumor. The gene encoding O6‐methylguanine DNA methyltransferase (MGMT), which removes the methyl group attached by temozolomide, is often silenced by promoter methylation in glioblastoma but is nevertheless expressed in a significant fraction of cases and is therefore regarded as one of the most clinically relevant mechanisms of resistance against temozolomide. However, to date, signaling pathways regulating MGMT in MGMT‐expressing glioblastoma cells have been poorly delineated. Here in this study, we provide lines of evidence that the mitogen‐activated protein/extracellular signal‐regulated kinase kinase (MEK)–extracellular signal‐regulated kinase (ERK)‐‐murine double minute 2 (MDM2)‐p53 pathway plays a critical role in the regulation of MGMT expression, using stem‐like glioblastoma cells directly derived from patient tumor samples and maintained in the absence of serum, which not only possess stem‐like properties but are also known to phenocopy the characteristics of the original tumors from which they are derived. We show that, in stem‐like glioblastoma cells, MEK inhibition reduced MDM2 expression and that inhibition of either MEK or MDM2 resulted in p53 activation accompanied by p53‐dependent downregulation of MGMT expression. MEK inhibition rendered otherwise resistant stem‐like glioblastoma cells sensitive to temozolomide, and combination of MEK inhibitor and temozolomide treatments effectively deprived stem‐like glioblastoma cells of their tumorigenic potential. Our findings suggest that targeting of the MEK‐ERK‐MDM2‐p53 pathway in combination with temozolomide could be a novel and promising therapeutic strategy in the treatment of glioblastoma. STEM CELLS 2011;29:1942–1951.


Neuroscience Letters | 2010

Regulation of neural stem/progenitor cell maintenance by PI3K and mTOR

Atsushi Sato; Jun Sunayama; Kenichiro Matsuda; Ken Tachibana; Kaori Sakurada; Arata Tomiyama; Takamasa Kayama; Chifumi Kitanaka

Control of stem cell state and differentiation of neural stem/progenitor cells is essential for proper development of the nervous system. EGF and FGF2 play important roles in the control of neural stem/progenitor cells, but the underlying mechanism still remains unclear. Here we show, using in vitro primary cultures of mouse neural stem/progenitor cells, that both PI3K and mTOR are activated by EGF/FGF2 but that inhibiting the activation of either PI3K or mTOR alone results in only reduced proliferation of neural stem/progenitor cells without affecting their stem cell state, namely, the capacity to self-renew. However, significantly, concurrent inhibition of PI3K and mTOR promoted exit from the stem cell state together with astrocytic differentiation of neural stem/progenitor cells. These findings suggest that PI3K and mTOR are involved in the EGF/FGF2-mediated maintenance of neural stem/progenitor cells and that they may act in parallel and independent pathways, complementing and backing up each other to maintain the stem cell state.


Stem Cells | 2011

FoxO3a functions as a key integrator of cellular signals that control glioblastoma stem-like cell differentiation and tumorigenicity.

Jun Sunayama; Atsushi Sato; Kenichiro Matsuda; Ken Tachibana; Eriko Watanabe; Shizuka Seino; Kaori Suzuki; Yoshitaka Narita; Soichiro Shibui; Kaori Sakurada; Takamasa Kayama; Arata Tomiyama; Chifumi Kitanaka

Glioblastoma is one of the most aggressive types of human cancer, with invariable and fatal recurrence even after multimodal intervention, for which cancer stem‐like cells (CSLCs) are now being held responsible. Our recent findings indicated that combinational inhibition of phosphoinositide‐3‐kinase/Akt/mammalian target of rapamycin (mTOR) and mitogen‐activated protein/extracellular signal‐regulated kinase kinase (MEK)/extracellular signal‐regulated kinase (ERK) pathways effectively promotes the commitment of glioblastoma CSLCs to differentiation and thereby suppresses their tumorigenicity. However, the mechanism by which these two signaling pathways are coordinated to regulate differentiation and tumorigenicity remains unknown. Here, we identified FoxO3a, a common phosphorylation target for Akt and ERK, as a key transcription factor that integrates the signals from these pathways. Combinational blockade of both the pathways caused nuclear accumulation and activation of FoxO3a more efficiently than blockade of either alone, and promoted differentiation of glioblastoma CSLCs in a FoxO3a expression‐dependent manner. Furthermore, the expression of a constitutively active FoxO3a mutant lacking phosphorylation sites for both Akt and ERK was sufficient to induce differentiation and reduce tumorigenicity of glioblastoma CSLCs. These findings suggest that FoxO3a may play a pivotal role in the control of differentiation and tumorigenicity of glioblastoma CSLCs by the PI3K/Akt/mTOR and MEK/ERK signaling pathways, and also imply that developing methods targeting effective FoxO3a activation could be a potential approach to the treatment of glioblastoma. STEM CELLS 2011;29:1327–1337


Cancer Research | 2014

Flotillin-1 Regulates Oncogenic Signaling in Neuroblastoma Cells by Regulating ALK Membrane Association

Arata Tomiyama; Takamasa Uekita; Reiko Kamata; Kazuki Sasaki; Junko Takita; Miki Ohira; Akira Nakagawara; Chifumi Kitanaka; Kentaro Mori; Hideki Yamaguchi; Ryuichi Sakai

Neuroblastomas harbor mutations in the nonreceptor anaplastic lymphoma kinase (ALK) in 8% to 9% of cases where they serve as oncogenic drivers. Strategies to reduce ALK activity offer clinical interest based on initial findings with ALK kinase inhibitors. In this study, we characterized phosphotyrosine-containing proteins associated with ALK to gain mechanistic insights in this setting. Flotillin-1 (FLOT1), a plasma membrane protein involved in endocytosis, was identified as a binding partner of ALK. RNAi-mediated attenuation of FLOT1 expression in neuroblastoma cells caused ALK dissociation from endosomes along with membrane accumulation of ALK, thereby triggering activation of ALK and downstream effector signals. These features enhanced the malignant properties of neuroblastoma cells in vitro and in vivo. Conversely, oncogenic ALK mutants showed less binding affinity to FLOT1 than wild-type ALK. Clinically, lower expression levels of FLOT1 were documented in highly malignant subgroups of human neuroblastoma specimens. Taken together, our findings suggest that attenuation of FLOT1-ALK binding drives malignant phenotypes of neuroblastoma by activating ALK signaling.


Biochemical and Biophysical Research Communications | 2015

Augmentation of invadopodia formation in temozolomide-resistant or adopted glioma is regulated by c-Jun terminal kinase-paxillin axis.

Hideaki Ueno; Arata Tomiyama; Hideki Yamaguchi; Takamasa Uekita; Takuya Shirakihara; Katsuhiko Nakashima; Naoki Otani; Kojiro Wada; Ryuichi Sakai; Hajime Arai; Kentaro Mori

Temozolomide (TMZ) is one of the few effective anticancer agents against gliomas. However, acquisition of TMZ resistance or adaptation by gliomas is currently a crucial problem, especially increased invasiveness which is critical for the determination of clinical prognosis. This study investigated the molecular regulatory mechanisms of TMZ resistance in gliomas involved in invasiveness, particularly invadopodia formation, a molecular complex formed at the invasive front to cause extracellular matrix degradation during cellular local invasion. The TMZ-resistant clone of the U343 MG human glioma cell line (U343-R cells) was established. U343-R cells demonstrated higher invadopodia formation compared with U343 cells without TMZ resistance (U343-Con cells). Immunoblot analysis of DNA damage-related mitogen-activated protein kinase signals found increased phosphorylation of c-Jun terminal kinase (JNK) and higher activation of its downstream signaling in U343-R cells compared with U343-Con cells. Treatment of U343-R cells with specific inhibitors of JNK or siRNA targeting JNK suppressed up-regulation of invadopodia formation. In addition, paxillin, one of the known JNK effectors which is phosphorylated and affects cell migration, was phosphorylated at serine 178 in JNK activity-dependent manner. Expression of paxillin with mutation of the serine 178 phosphorylation site in U343-R cells blocked invadopodia formation. The present findings suggest that increased formation of invadopodia in U343-R cells is mediated by hyperactivation of JNK-paxillin signaling, and both JNK and paxillin might become targets of novel therapies against TMZ-resistant gliomas.


Cell death discovery | 2018

The p53 activator overcomes resistance to ALK inhibitors by regulating p53-target selectivity in ALK-driven neuroblastomas

Makoto Miyazaki; Ryo Otomo; Yuko Matsushima-Hibiya; Hidenobu Suzuki; Ayana Nakajima; Naomi Abe; Arata Tomiyama; Koichi Ichimura; Koichi Matsuda; Toshiki Watanabe; Takahiro Ochiya; Hitoshi Nakagama; Ryuichi Sakai; Masato Enari

Anaplastic lymphoma kinase (ALK) is an oncogenic receptor tyrosine kinase that is activated by gene amplification and mutation in neuroblastomas. ALK inhibitors can delay the progression of ALK-driven cancers, but are of limited use owing to ALK inhibitor resistance. Here, we show that resistance to ALK inhibitor in ALK-driven neuroblastomas can be attenuated by combination treatment with a p53 activator. Either ALK inhibition or p53 activator treatment induced cell cycle arrest, whereas combination treatment induced apoptosis, and prevented tumour relapse both in vitro and in vivo. This shift toward apoptosis, and away from cell-cycle arrest, in the presence of an ALK inhibitor and a p53 activator, is mediated by inhibition of the ALK–AKT–FOXO3a axis leading to a specific upregulation of SOX4. SOX4 cooperates with p53 to upregulate the pro-apoptotic protein PUMA. These data therefore suggest a novel combination therapy strategy for treating ALK-driven neuroblastomas.


Biochemical and Biophysical Research Communications | 2018

Intracellular cholesterol level regulates sensitivity of glioblastoma cells against temozolomide-induced cell death by modulation of caspase-8 activation via death receptor 5-accumulation and activation in the plasma membrane lipid raft

Yutaro Yamamoto; Arata Tomiyama; Nobuyoshi Sasaki; Hideki Yamaguchi; Takuya Shirakihara; Katsuhiko Nakashima; Kosuke Kumagai; Satoru Takeuchi; Terushige Toyooka; Naoki Otani; Kojiro Wada; Yoshitaka Narita; Koichi Ichimura; Ryuichi Sakai; Hiroki Namba; Kentaro Mori

Development of resistance against temozolomide (TMZ) in glioblastoma (GBM) after continuous treatment with TMZ is one of the critical problems in clinical GBM therapy. Intracellular cholesterol regulates cancer cell biology, but whether intracellular cholesterol is involved in TMZ resistance of GBM cells remains unclear. The involvement of intracellular cholesterol in acquired resistance against TMZ in GBM cells was investigated. Intracellular cholesterol levels were measured in human U251 MG cells with acquired TMZ resistance (U251-R cells) and TMZ-sensitive control U251 MG cells (U251-Con cells), and found that the intracellular cholesterol level was significantly lower in U251-R cells than in U251-Con cells. In addition, treatment by intracellular cholesterol remover, methyl-beta cyclodextrin (MβCD), or intracellular cholesterol inducer, soluble cholesterol (Chol), regulated TMZ-induced U251-Con cell death in line with changes in intracellular cholesterol level. Involvement of death receptor 5 (DR5), a death receptor localized in the plasma membrane, was evaluated. TMZ without or with MβCD and/or Chol caused accumulation of DR5 into the plasma membrane lipid raft and formed a complex with caspase-8, an extrinsic caspase cascade inducer, reflected in the induction of cell death. In addition, treatment with caspase-8 inhibitor or knockdown of DR5 dramatically suppressed U251-Con cell death induced by combination treatment with TMZ, MβCD, and Chol. Combined treatment of Chol with TMZ reversed the TMZ resistance of U251-R cells and another GBM cell model with acquired TMZ resistance, whereas clinical antihypercholesterolemia agents at physiological concentrations suppressed TMZ-induced cell death of U251-Con cells. These findings suggest that intracellular cholesterol level affects TMZ treatment of GBM mediated via a DR5-caspase-8 mechanism.

Collaboration


Dive into the Arata Tomiyama's collaboration.

Top Co-Authors

Avatar

Kentaro Mori

National Defense Medical College

View shared research outputs
Top Co-Authors

Avatar

Kojiro Wada

National Defense Medical College

View shared research outputs
Top Co-Authors

Avatar

Naoki Otani

National Defense Medical College

View shared research outputs
Top Co-Authors

Avatar

Terushige Toyooka

National Defense Medical College

View shared research outputs
Top Co-Authors

Avatar

Satoru Takeuchi

National Defense Medical College

View shared research outputs
Top Co-Authors

Avatar

Kazuya Fujii

National Defense Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoshi Tomura

National Defense Medical College

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge