Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arathy D. S. Nair is active.

Publication


Featured researches published by Arathy D. S. Nair.


PLOS Pathogens | 2013

Targeted and Random Mutagenesis of Ehrlichia chaffeensis for the Identification of Genes Required for In vivo Infection

Chuanmin Cheng; Arathy D. S. Nair; Vijaya V. Indukuri; Shanzhong Gong; Roderick F. Felsheim; Deborah C. Jaworski; Ulrike G. Munderloh; Roman R. Ganta

Ehrlichia chaffeensis is a tick transmitted pathogen responsible for the disease human monocytic ehrlichiosis. Research to elucidate gene function in rickettsial pathogens is limited by the lack of genetic manipulation methods. Mutational analysis was performed, targeting to specific and random insertion sites within the bacteriums genome. Targeted mutagenesis at six genomic locations by homologous recombination and mobile group II intron-based methods led to the consistent identification of mutants in two genes and in one intergenic site; the mutants persisted in culture for 8 days. Three independent experiments using Himar1 transposon mutagenesis of E. chaffeensis resulted in the identification of multiple mutants; these mutants grew continuously in macrophage and tick cell lines. Nine mutations were confirmed by sequence analysis. Six insertions were located within non-coding regions and three were present in the coding regions of three transcriptionally active genes. The intragenic mutations prevented transcription of all three genes. Transposon mutants containing a pool of five different insertions were assessed for their ability to infect deer and subsequent acquisition by Amblyomma americanum ticks, the natural reservoir and vector, respectively. Three of the five mutants with insertions into non-coding regions grew well in deer. Transposition into a differentially expressed hypothetical gene, Ech_0379, and at 18 nucleotides downstream to Ech_0230 gene coding sequence resulted in the inhibition of growth in deer, which is further evidenced by their failed acquisition by ticks. Similarly, a mutation into the coding region of ECH_0660 gene inhibited the in vivo growth in deer. This is the first study evaluating targeted and random mutagenesis in E. chaffeensis, and the first to report the generation of stable mutants in this obligate intracellular bacterium. We further demonstrate that in vitro mutagenesis coupled with in vivo infection assessment is a successful strategy in identifying genomic regions required for the pathogens in vivo growth.


PLOS ONE | 2016

Comparative Experimental Infection Study in Dogs with Ehrlichia canis, E. chaffeensis, Anaplasma platys and A. phagocytophilum

Arathy D. S. Nair; Chuanmin Cheng; Chanran K. Ganta; Michael W. Sanderson; Arthur R. Alleman; Ulrike G. Munderloh; Roman R. Ganta

Dogs acquire infections with the Anaplasmataceae family pathogens, E. canis, E. chaffeensis, E. ewingii, A. platys and A. phagocytophilum mostly during summer months when ticks are actively feeding on animals. These pathogens are also identified as causing diseases in people. Despite the long history of tick-borne diseases in dogs, much remains to be defined pertaining to the clinical and pathological outcomes of infections with these pathogens. In the current study, we performed experimental infections in dogs with E. canis, E. chaffeensis, A. platys and A. phagocytophilum. Animals were monitored for 42 days to evaluate infection-specific clinical, hematological and pathological differences. All four pathogens caused systemic persistent infections detectible throughout the 6 weeks of infection assessment. Fever was frequently detected in animals infected with E. canis, E. chaffeensis, and A. platys, but not in dogs infected with A. phagocytophilum. Hematological differences were evident in all four infected groups, although significant overlap existed between the groups. A marked reduction in packed cell volume that correlated with reduced erythrocytes and hemoglobin was observed only in E. canis infected animals. A decline in platelet numbers was common with E. canis, A. platys and A. phagocytophilum infections. Histopathological lesions in lung, liver and spleen were observed in all four groups of infected dogs; infection with E. canis had the highest pathological scores, followed by E. chaffeensis, then A. platys and A. phagocytophilum. All four pathogens induced IgG responses starting on day 7 post infection, which was predominantly comprised of IgG2 subclass antibodies. This is the first detailed investigation comparing the infection progression and host responses in dogs after inoculation with four pathogens belonging to the Anaplasmataceae family. The study revealed a significant overlap in clinical, hematological and pathological changes resulting from the infections.


PLOS ONE | 2016

Vaccination with an Attenuated Mutant of Ehrlichia chaffeensis Induces Pathogen-Specific CD4(+) T Cell Immunity and Protection from Tick-Transmitted Wild-Type Challenge in the Canine Host

Jodi L. McGill; Arathy D. S. Nair; Chuanmin Cheng; Rachel A. Rusk; Deborah C. Jaworski; Roman R. Ganta

Ehrlichia chaffeensis is a tick-borne rickettsial pathogen and the causative agent of human monocytic ehrlichiosis. Transmitted by the Amblyomma americanum tick, E. chaffeensis also causes disease in several other vertebrate species including white-tailed deer and dogs. We have recently described the generation of an attenuated mutant strain of E. chaffeensis, with a mutation in the Ech_0660 gene, which is able to confer protection from secondary, intravenous-administered, wild-type E. chaffeensis infection in dogs. Here, we extend our previous results, demonstrating that vaccination with the Ech_0660 mutant protects dogs from physiologic, tick-transmitted, secondary challenge with wild-type E. chaffeensis; and describing, for the first time, the cellular and humoral immune responses induced by Ech_0660 mutant vaccination and wild-type E. chaffeensis infection in the canine host. Both vaccination and infection induced a rise in E. chaffeensis-specific antibody titers and a significant Th1 response in peripheral blood as measured by E. chaffeensis antigen-dependent CD4+ T cell proliferation and IFNγ production. Further, we describe for the first time significant IL-17 production by peripheral blood leukocytes from both Ech_0660 mutant vaccinated animals and control animals infected with wild-type E. chaffeensis, suggesting a previously unrecognized role for IL-17 and Th17 cells in the immune response to rickettsial pathogens. Our results are a critical first step towards defining the role of the immune system in vaccine-induced protection from E. chaffeensis infection in an incidental host; and confirm the potential of the attenuated mutant clone, Ech_0660, to be used as a vaccine candidate for protection against tick-transmitted E. chaffeensis infection.


PLOS ONE | 2015

Mutations in Ehrlichia chaffeensis Causing Polar Effects in Gene Expression and Differential Host Specificities

Chuanmin Cheng; Arathy D. S. Nair; Deborah C. Jaworski; Roman R. Ganta

Ehrlichia chaffeensis, a tick-borne rickettsial, is responsible for human monocytic ehrlichiosis. In this study, we assessed E. chaffeensis insertion mutations impacting the transcription of genes near the insertion sites. We presented evidence that the mutations within the E. chaffeensis genome at four genomic locations cause polar effects in altering gene expressions. We also reported mutations causing attenuated growth in deer (the pathogen’s reservoir host) and in dog (an incidental host), but not in its tick vector, Amblyomma americanum. This is the first study documenting insertion mutations in E. chaffeensis that cause polar effects in altering gene expression from the genes located upstream and downstream to insertion sites and the differential requirements of functionally active genes of the pathogen for its persistence in vertebrate and tick hosts. This study is important in furthering our knowledge on E. chaffeensis pathogenesis.


PLOS ONE | 2014

Ehrlichia chaffeensis Infection in the Reservoir Host (White-Tailed Deer) and in an Incidental Host (Dog) Is Impacted by Its Prior Growth in Macrophage and Tick Cell Environments

Arathy D. S. Nair; Chuanmin Cheng; Deborah C. Jaworski; Lloyd Willard; Michael W. Sanderson; Roman R. Ganta

Ehrlichia chaffeensis, transmitted from Amblyomma americanum ticks, causes human monocytic ehrlichiosis. It also infects white-tailed deer, dogs and several other vertebrates. Deer are its reservoir hosts, while humans and dogs are incidental hosts. E. chaffeensis protein expression is influenced by its growth in macrophages and tick cells. We report here infection progression in deer or dogs infected intravenously with macrophage- or tick cell-grown E. chaffeensis or by tick transmission in deer. Deer and dogs developed mild fever and persistent rickettsemia; the infection was detected more frequently in the blood of infected animals with macrophage inoculum compared to tick cell inoculum or tick transmission. Tick cell inoculum and tick transmission caused a drop in tick infection acquisition rates compared to infection rates in ticks fed on deer receiving macrophage inoculum. Independent of deer or dogs, IgG antibody response was higher in animals receiving macrophage inoculum against macrophage-derived Ehrlichia antigens, while it was significantly lower in the same animals against tick cell-derived Ehrlichia antigens. Deer infected with tick cell inoculum and tick transmission caused a higher antibody response to tick cell cultured bacterial antigens compared to the antibody response for macrophage cultured antigens for the same animals. The data demonstrate that the host cell-specific E. chaffeensis protein expression influences rickettsemia in a host and its acquisition by ticks. The data also reveal that tick cell-derived inoculum is similar to tick transmission with reduced rickettsemia, IgG response and tick acquisition of E. chaffeensis.


Infection and Immunity | 2015

Attenuated Mutants of Ehrlichia chaffeensis Induce Protection against Wild-Type Infection Challenge in the Reservoir Host and in an Incidental Host

Arathy D. S. Nair; Chuanmin Cheng; Deborah C. Jaworski; Suhasini Ganta; Michael W. Sanderson; Roman R. Ganta

ABSTRACT Ehrlichia chaffeensis, a tick-borne rickettsial organism, causes the disease human monocytic ehrlichiosis. The pathogen also causes disease in several other vertebrates, including dogs and deer. In this study, we assessed two clonally purified E. chaffeensis mutants with insertions within the genes Ech_0379 and Ech_0660 as vaccine candidates in deer and dogs. Infection with the Ech_0379 mutant and challenge with wild-type E. chaffeensis 1 month following inoculation with the mutant resulted in the reduced presence of the organism in blood compared to the presence of wild-type infection in both deer and dogs. The Ech_0660 mutant infection resulted in its rapid clearance from the bloodstream. The wild-type infection challenge following Ech_0660 mutant inoculation also caused the pathogens clearance from blood and tissue samples as assessed at the end of the study. The Ech_0379 mutant-infected and -challenged animals also remained positive for the organism in tissue samples in deer but not in dogs. This is the first study that documents that insertion mutations in E. chaffeensis that cause attenuated growth confer protection against wild-type infection challenge. This study is important in developing vaccines to protect animals and people against Ehrlichia species infections.


Ticks and Tick-borne Diseases | 2017

Amblyomma americanum ticks infected with in vitro cultured wild-type and mutants of Ehrlichia chaffeensis are competent to produce infection in naïve deer and dogs

Deborah C. Jaworski; Chuanmin Cheng; Arathy D. S. Nair; Roman R. Ganta

Monocytic ehrlichiosis in people caused by the intracellular bacterium, Ehrlichia chaffeensis, is an emerging infectious disease transmitted by the lone star tick, Amblyomma americanum. Tick transmission disease models for ehrlichiosis require at least two hosts and two tick blood feeding episodes to recapitulate the natural transmission cycle. One blood feeding is necessary for the tick to acquire the infection from an infected host and the next feeding is needed to transmit the bacterium to a naïve host. We have developed a model for E. chaffeensis transmission that eliminates the entire tick acquisition stage while still producing high numbers of infected ticks that are also able to transmit infections to naïve hosts. Fully engorged A. americanum nymphs were ventrally needle-infected, possibly into the midgut, and following molting, the unfed adult ticks were used to infect naive deer and dogs. We have also described using the ticks infected by this method the transmission of both wild-type and transposon mutants of E. chaffeensis to its primary reservoir host, white tailed deer and to another known host, dog. The infection progression and IgG antibody responses in deer were similar to those observed with transmission feeding of ticks acquiring infection by natural blood feeding. The pathogen infections acquired by natural tick transmission and by feeding needle-infected ticks on animals were also similar to intravenous infections in causing persistent infections. Needle-infected ticks having the ability to transmit pathogens will be a valuable resource to substantially simplify the process of generating infected ticks and to study infection systems in vertebrate hosts where interference of other pathogens could be avoided.


Journal of Veterinary Diagnostic Investigation | 2017

Initial development and preliminary evaluation of a multiplex bead assay to detect antibodies to Ehrlichia canis, Anaplasma platys, and Ehrlichia chaffeensis outer membrane peptides in naturally infected dogs from Grenada, West Indies:

Melinda J. Wilkerson; Kelley E. Black; Marta Lanza-Perea; Bhumika Sharma; Kathryn Gibson; Diana Stone; Anushka George; Arathy D. S. Nair; Roman R. Ganta

Tick-borne bacteria, Ehrlichia canis, Anaplasma platys, and Ehrlichia chaffeensis are significant pathogens of dogs worldwide, and coinfections of E. canis and A. platys are common in dogs on the Caribbean islands. We developed and evaluated the performance of a multiplex bead-based assay to detect antibodies to E. canis, A. platys, and E. chaffeensis peptides in dogs from Grenada, West Indies, where E. canis and A. platys infections are endemic. Peptides from outer membrane proteins of P30 of E. canis, OMP-1X of A. platys, and P28-19/P28-14 of E. chaffeensis were coupled to magnetic beads. The multiplex peptide assay detected antibodies in dogs experimentally infected with E. canis and E. chaffeensis, but not in an A. platys experimentally infected dog. In contrast, the multiplex assay and an in-house enzyme-linked immunosorbent assay (ELISA) detected A. platys antibodies in naturally infected Grenadian dogs. Following testing of 104 Grenadian canine samples, multiplex assay results had good agreement with commercially available ELISA and immunofluorescent assay for E. canis antibody-positive dogs (K values of 0.73 and 0.84), whereas A. platys multiplex results had poor agreement with these commercial assays (K values of −0.02 and 0.01). Prevalence of seropositive E. canis and A. platys Grenadian dogs detected by the multiplex and commercial antibody assays were similar to previous reports. Although the multiplex peptide assay performed well in detecting the seropositive status of dogs to E. canis and had good agreement with commercial assays, better antigen targets are necessary for the antibody detection of A. platys.


Journal of Asia-pacific Entomology | 2018

The transcriptome of the lone star tick, Amblyomma americanum, reveals molecular changes in response to infection with the pathogen, Ehrlichia chaffeensis

Donghun Kim; Deborah C. Jaworski; Chuanmin Cheng; Arathy D. S. Nair; Roman R. Ganta; Nic Herndon; Susan J. Brown; Yoonseong Park


Archive | 2016

ATTENUATED VACCINES TO PROTECT AGAINST TICK-BORNE EHRLICHIA SPECIES INFECTIONS

Roman R. Ganta; Chuanmin Cheng; Arathy D. S. Nair; Deborah C. Jaworski; Suhasini Ganta

Collaboration


Dive into the Arathy D. S. Nair's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donghun Kim

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge