Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aravind Subramanian is active.

Publication


Featured researches published by Aravind Subramanian.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles

Aravind Subramanian; Pablo Tamayo; Vamsi K. Mootha; Sayan Mukherjee; Benjamin L. Ebert; Michael A. Gillette; Amanda G. Paulovich; Scott L. Pomeroy; Todd R. Golub; Eric S. Lander; Jill P. Mesirov

Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.


Nature Genetics | 2003

PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes.

Vamsi K. Mootha; Cecilia M. Lindgren; Karl-Fredrik Eriksson; Aravind Subramanian; Smita Sihag; Joseph Lehar; Pere Puigserver; Emma Carlsson; Martin Ridderstråle; Esa Laurila; Nicholas E. Houstis; Mark J. Daly; Nick Patterson; Jill P. Mesirov; Todd R. Golub; Pablo Tamayo; Bruce M. Spiegelman; Eric S. Lander; Joel N. Hirschhorn; David Altshuler; Leif Groop

DNA microarrays can be used to identify gene expression changes characteristic of human disease. This is challenging, however, when relevant differences are subtle at the level of individual genes. We introduce an analytical strategy, Gene Set Enrichment Analysis, designed to detect modest but coordinate changes in the expression of groups of functionally related genes. Using this approach, we identify a set of genes involved in oxidative phosphorylation whose expression is coordinately decreased in human diabetic muscle. Expression of these genes is high at sites of insulin-mediated glucose disposal, activated by PGC-1α and correlated with total-body aerobic capacity. Our results associate this gene set with clinically important variation in human metabolism and illustrate the value of pathway relationships in the analysis of genomic profiling experiments.


Science | 2006

The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease

Justin Lamb; Emily D Crawford; David Peck; Joshua W. Modell; Irene C. Blat; Matthew J. Wrobel; Jim Lerner; Jean-Philippe Brunet; Aravind Subramanian; Kenneth N. Ross; Michael P Reich; Haley Hieronymus; Guo Wei; Scott A. Armstrong; Stephen J. Haggarty; Paul A. Clemons; Ru Wei; Steven A. Carr; Eric S. Lander; Todd R. Golub

To pursue a systematic approach to the discovery of functional connections among diseases, genetic perturbation, and drug action, we have created the first installment of a reference collection of gene-expression profiles from cultured human cells treated with bioactive small molecules, together with pattern-matching software to mine these data. We demonstrate that this “Connectivity Map” resource can be used to find connections among small molecules sharing a mechanism of action, chemicals and physiological processes, and diseases and drugs. These results indicate the feasibility of the approach and suggest the value of a large-scale community Connectivity Map project.


Bioinformatics | 2011

Molecular signatures database (MSigDB) 3.0

Arthur Liberzon; Aravind Subramanian; Reid Pinchback; Helga Thorvaldsdottir; Pablo Tamayo; Jill P. Mesirov

MOTIVATION Well-annotated gene sets representing the universe of the biological processes are critical for meaningful and insightful interpretation of large-scale genomic data. The Molecular Signatures Database (MSigDB) is one of the most widely used repositories of such sets. RESULTS We report the availability of a new version of the database, MSigDB 3.0, with over 6700 gene sets, a complete revision of the collection of canonical pathways and experimental signatures from publications, enhanced annotations and upgrades to the web site. AVAILABILITY AND IMPLEMENTATION MSigDB is freely available for non-commercial use at http://www.broadinstitute.org/msigdb.


Proceedings of the National Academy of Sciences of the United States of America | 2005

From the Cover: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles

Aravind Subramanian; Pablo Tamayo; Vamsi K. Mootha; Sayan Mukherjee; Benjamin L. Ebert; Michael A. Gillette; Amanda G. Paulovich; Scott L. Pomeroy; Todd R. Golub; Eric S. Lander; Jill P. Mesirov

Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.


Cell | 2011

Densely Interconnected Transcriptional Circuits Control Cell States in Human Hematopoiesis

Noa Novershtern; Aravind Subramanian; Lee N. Lawton; Raymond H. Mak; W. Nicholas Haining; Marie McConkey; Naomi Habib; Nir Yosef; Cindy Y. Chang; Tal Shay; Garrett M. Frampton; Adam Drake; Ilya B. Leskov; Björn Nilsson; Fred Preffer; David Dombkowski; John W. Evans; Ted Liefeld; John S. Smutko; Jianzhu Chen; Nir Friedman; Richard A. Young; Todd R. Golub; Aviv Regev; Benjamin L. Ebert

Though many individual transcription factors are known to regulate hematopoietic differentiation, major aspects of the global architecture of hematopoiesis remain unknown. Here, we profiled gene expression in 38 distinct purified populations of human hematopoietic cells and used probabilistic models of gene expression and analysis of cis-elements in gene promoters to decipher the general organization of their regulatory circuitry. We identified modules of highly coexpressed genes, some of which are restricted to a single lineage but most of which are expressed at variable levels across multiple lineages. We found densely interconnected cis-regulatory circuits and a large number of transcription factors that are differentially expressed across hematopoietic states. These findings suggest a more complex regulatory system for hematopoiesis than previously assumed.


Bioinformatics | 2007

GSEA-P

Aravind Subramanian; Heidi Kuehn; Joshua Gould; Pablo Tamayo; Jill P. Mesirov

UNLABELLED Gene Set Enrichment Analysis (GSEA) is a computational method that assesses whether an a priori defined set of genes shows statistically significant, concordant differences between two biological states. We report the availability of a new version of the Java based software (GSEA-P 2.0) that represents a major improvement on the previous release through the addition of a leading edge analysis component, seamless integration with the Molecular Signature Database (MSigDB) and an embedded browser that allows users to search for gene sets and map them to a variety of microarray platform formats. This functionality makes it possible for users to directly import gene sets from MSigDB for analysis with GSEA. We have also improved the visualizations in GSEA-P 2.0 and added links to a new form of concise gene set annotations called Gene Set Cards. These additions, as well as other improvements suggested by over 3500 users who have downloaded the software over the past year have been incorporated into this new release of the GSEA-P Java desktop program. AVAILABILITY GSEA-P 2.0 is freely available for academic and commercial users and can be downloaded from http://www.broad.mit.edu/GSEA


Proceedings of the National Academy of Sciences of the United States of America | 2008

Highly parallel identification of essential genes in cancer cells

Biao Luo; Hiu Wing Cheung; Aravind Subramanian; Tanaz Sharifnia; Michael Okamoto; Xiaoping Yang; Greg Hinkle; Jesse S. Boehm; Rameen Beroukhim; Barbara A. Weir; Craig H. Mermel; David A. Barbie; Tarif Awad; Xiaochuan Zhou; Tuyen Nguyen; Bruno Piqani; Cheng Li; Todd R. Golub; Matthew Meyerson; Nir Hacohen; William C. Hahn; Eric S. Lander; David M. Sabatini; David E. Root

More complete knowledge of the molecular mechanisms underlying cancer will improve prevention, diagnosis and treatment. Efforts such as The Cancer Genome Atlas are systematically characterizing the structural basis of cancer, by identifying the genomic mutations associated with each cancer type. A powerful complementary approach is to systematically characterize the functional basis of cancer, by identifying the genes essential for growth and related phenotypes in different cancer cells. Such information would be particularly valuable for identifying potential drug targets. Here, we report the development of an efficient, robust approach to perform genome-scale pooled shRNA screens for both positive and negative selection and its application to systematically identify cell essential genes in 12 cancer cell lines. By integrating these functional data with comprehensive genetic analyses of primary human tumors, we identified known and putative oncogenes such as EGFR, KRAS, MYC, BCR-ABL, MYB, CRKL, and CDK4 that are essential for cancer cell proliferation and also altered in human cancers. We further used this approach to identify genes involved in the response of cancer cells to tumoricidal agents and found 4 genes required for the response of CML cells to imatinib treatment: PTPN1, NF1, SMARCB1, and SMARCE1, and 5 regulators of the response to FAS activation, FAS, FADD, CASP8, ARID1A and CBX1. Broad application of this highly parallel genetic screening strategy will not only facilitate the rapid identification of genes that drive the malignant state and its response to therapeutics but will also enable the discovery of genes that participate in any biological process.


Nature Genetics | 2005

An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis

Alejandro Sweet-Cordero; Sayan Mukherjee; Aravind Subramanian; Han You; Jeffrey J Roix; Christine Ladd-Acosta; Jill P. Mesirov; Todd R. Golub; Tyler Jacks

Using advanced gene targeting methods, generating mouse models of cancer that accurately reproduce the genetic alterations present in human tumors is now relatively straightforward. The challenge is to determine to what extent such models faithfully mimic human disease with respect to the underlying molecular mechanisms that accompany tumor progression. Here we describe a method for comparing mouse models of cancer with human tumors using gene-expression profiling. We applied this method to the analysis of a model of Kras2-mediated lung cancer and found a good relationship to human lung adenocarcinoma, thereby validating the model. Furthermore, we found that whereas a gene-expression signature of KRAS2 activation was not identifiable when analyzing human tumors with known KRAS2 mutation status alone, integrating mouse and human data uncovered a gene-expression signature of KRAS2 mutation in human lung cancer. We confirmed the importance of this signature by gene-expression analysis of short hairpin RNA–mediated inhibition of oncogenic Kras2. These experiments identified both a pattern of gene expression indicative of KRAS2 mutation and potential effectors of oncogenic KRAS2 activity in human cancer. This approach provides a strategy for using genomic analysis of animal models to probe human disease.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Perturbational profiling of nanomaterial biologic activity

Stanley Y. Shaw; Elizabeth C. Westly; Mikael J. Pittet; Aravind Subramanian; Stuart L. Schreiber; Ralph Weissleder

Our understanding of the biologic effects (including toxicity) of nanomaterials is incomplete. In vivo animal studies remain the gold standard; however, widespread testing remains impractical, and the development of in vitro assays that correlate with in vivo activity has proven challenging. Here, we demonstrate the feasibility of analyzing in vitro nanomaterial activity in a generalizable, systematic fashion. We assessed nanoparticle effects in a multidimensional manner, using multiple cell types and multiple assays that reflect different aspects of cellular physiology. Hierarchical clustering of these data identifies nanomaterials with similar patterns of biologic activity across a broad sampling of cellular contexts, as opposed to extrapolating from results of a single in vitro assay. We show that this approach yields robust and detailed structure–activity relationships. Furthermore, a subset of nanoparticles were tested in mice, and nanoparticles with similar activity profiles in vitro exert similar effects on monocyte number in vivo. These data suggest a strategy of multidimensional characterization of nanomaterials in vitro that can inform the design of novel nanomaterials and guide studies of in vivo activity.

Collaboration


Dive into the Aravind Subramanian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pablo Tamayo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin L. Ebert

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge