Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rajiv Narayan is active.

Publication


Featured researches published by Rajiv Narayan.


Nature | 2013

A melanocyte lineage program confers resistance to MAP kinase pathway inhibition

Cory M. Johannessen; Laura A. Johnson; Federica Piccioni; Aisha Townes; Dennie T. Frederick; Melanie K. Donahue; Rajiv Narayan; Keith T. Flaherty; Jennifer A. Wargo; David E. Root; Levi A. Garraway

Malignant melanomas harbouring point mutations (Val600Glu) in the serine/threonine-protein kinase BRAF (BRAF(V600E)) depend on RAF–MEK–ERK signalling for tumour cell growth. RAF and MEK inhibitors show remarkable clinical efficacy in BRAF(V600E) melanoma; however, resistance to these agents remains a formidable challenge. Global characterization of resistance mechanisms may inform the development of more effective therapeutic combinations. Here we carried out systematic gain-of-function resistance studies by expressing more than 15,500 genes individually in a BRAF(V600E) melanoma cell line treated with RAF, MEK, ERK or combined RAF–MEK inhibitors. These studies revealed a cyclic-AMP-dependent melanocytic signalling network not previously associated with drug resistance, including G-protein-coupled receptors, adenyl cyclase, protein kinase A and cAMP response element binding protein (CREB). Preliminary analysis of biopsies from BRAF(V600E) melanoma patients revealed that phosphorylated (active) CREB was suppressed by RAF–MEK inhibition but restored in relapsing tumours. Expression of transcription factors activated downstream of MAP kinase and cAMP pathways also conferred resistance, including c-FOS, NR4A1, NR4A2 and MITF. Combined treatment with MAPK-pathway and histone-deacetylase inhibitors suppressed MITF expression and cAMP-mediated resistance. Collectively, these data suggest that oncogenic dysregulation of a melanocyte lineage dependency can cause resistance to RAF–MEK–ERK inhibition, which may be overcome by combining signalling- and chromatin-directed therapeutics.


Science | 2013

Tight Coordination of Protein Translation and HSF1 Activation Supports the Anabolic Malignant State

Sandro Santagata; Marc L. Mendillo; Yun Chi Tang; Aravind Subramanian; Casey C. Perley; Stéphane P. Roche; Bang Wong; Rajiv Narayan; Hyoungtae Kwon; Martina Koeva; Angelika Amon; Todd R. Golub; John A. Porco; Luke Whitesell; Susan Lindquist

Introduction Ribosome biogenesis is commonly up-regulated to satisfy the increased anabolic demands associated with malignant transformation and tumor growth. Many different oncogenic signaling pathways converge on the ribosome to increase translational flux. Despite the detailed understanding of ribosome regulation in cancer, it is not clear whether the net translational activity of the ribosome can itself regulate transcriptional programs that support and promote the malignant state. Methods To investigate the transcriptional effects of modulating translational activity in malignant cells, we used integrated chemical and genetic approaches, including a gene signature–based genetic and chemical screen of more than 600,000 gene expression profiles (LINCS database) and an independent, reporter-based chemical screen of more than 300,000 compounds. A lead compound was tested in several cell-lines unified by their increased dependence on HSF1 activation for growth and survival, and in an in vivo cancer model. Results Inhibiting translation led to large changes in the transcriptome. The single most enriched category consisted of genes regulated by the heat-shock transcription factor, HSF1. The most down-regulated mRNA was HSPA8, which encodes the constitutive HSP70 chaperone that helps to fold nascent polypeptides. The expression of many other genes that HSF1 coordinates to support cancer were also strongly affected. HSF1 protein levels were unchanged, but HSF1 DNA occupancy was nearly eliminated. Inhibition of the HSF1-regulated gene expression program is thus a dominant transcriptional effect elicited by inhibiting protein translation. Using a gene signature of HSF1 inactivation to query the LINCS database revealed a strong connection between HSF1 inactivation and perturbations that inhibit protein translation, including a broad spectrum of chemical and genetic interventions that target the ribosome, eukaryotic initiation factors (eIFs), aminoacyl tRNA synthetases, and upstream signaling/regulatory pathways that control translation. Our high-throughput small-molecule screen identified rocaglamide A, an inhibitor of translation initiation, was the strongest inhibitor of HSF1 activation. An analog of this compound, RHT, increased thioredoxin-interacting protein (TXNIP) mRNA and protein levels and decreased glucose uptake and lactate production. Cell-based cancer models characterized by high dependence on HSF1 activation for growth and survival were highly sensitive to RHT, as were cells derived from diverse hematopoietic malignancies. RHT had a strong antitumor effect—with marked inhibition of HSF1 activity and glucose uptake—against xenografted acute myeloid leukemia cells. Discussion The ribosome functions as a central information hub in malignant cells: Translational flux conveys information about the cell’s metabolic status to regulate the transcriptional programs that support it. Multiple unbiased chemical and genetic approaches establish HSF1 as a prime transducer of this information, centrally poised to regulate the transcription of genes that support protein folding, biomass expansion, anabolic metabolism, cellular proliferation, and survival. Targeting translation initiation may offer a strategy for reversing HSF1 activation, disabling metabolic and cytoprotective pathways in malignant cells. HSF1 at the crossroads of protein translation and metabolism. (Left) Cancers activate an HSF1-regulated transcriptional program to adapt to the anabolic demands of relentless biomass expansion. Glucose uptake increases, and expression of TXNIP, an inhibitor of glucose uptake, drops. (Right) Down-regulating translation with rocaglate scaffold initiation inhibitors reverses cancer-associated HSF1 activation. Glucose uptake drops as TXNIP levels rise. Sensing Reduced Translation The interplay between metabolic pathways and the cellular survival programs that enable tumors to grow are poorly understood. Heat shock factor 1 (HSF1) coordinates an unexpectedly diverse transcriptional network involved in oncogenesis. Santagata et al. (p. 1238303; see the Perspective by Gandin and Topisirovic) found that reduced translation may be used to sense a cells metabolic status and regulate transcription, in particular by inactivating HSF1 with consequent affects on its targets. Small-molecule drugs that affected this link were able to inhibit the growth of transformed cells in culture and of an animal tumor model. Chemical and genetic screening links ribosome activity levels and a transcriptional regulator in malignant cells. [Also see Perspective by Gandin and Topisirovic] The ribosome is centrally situated to sense metabolic states, but whether its activity, in turn, coherently rewires transcriptional responses is unknown. Here, through integrated chemical-genetic analyses, we found that a dominant transcriptional effect of blocking protein translation in cancer cells was inactivation of heat shock factor 1 (HSF1), a multifaceted transcriptional regulator of the heat-shock response and many other cellular processes essential for anabolic metabolism, cellular proliferation, and tumorigenesis. These analyses linked translational flux to the regulation of HSF1 transcriptional activity and to the modulation of energy metabolism. Targeting this link with translation initiation inhibitors such as rocaglates deprived cancer cells of their energy and chaperone armamentarium and selectively impaired the proliferation of both malignant and premalignant cells with early-stage oncogenic lesions.


Nature Chemical Biology | 2013

Niche-based screening identifies small-molecule inhibitors of leukemia stem cells

Kimberly A. Hartwell; Peter Miller; Siddhartha Mukherjee; Alissa R. Kahn; Alison L. Stewart; David J. Logan; Joseph Negri; Mildred Duvet; Marcus Järås; Rishi V. Puram; Vlado Dančík; Fatima Al-Shahrour; Thomas Kindler; Zuzana Tothova; Shrikanta Chattopadhyay; Thomas Hasaka; Rajiv Narayan; Mingji Dai; Christina Huang; Sebastian Shterental; Lisa P. Chu; J. Erika Haydu; Jae Hung Shieh; David P. Steensma; Benito Munoz; Joshua Bittker; Alykhan F. Shamji; Paul A. Clemons; Nicola Tolliday; Anne E. Carpenter

Efforts to develop more effective therapies for acute leukemia may benefit from high-throughput screening systems that reflect the complex physiology of the disease, including leukemia stem cells (LSCs) and supportive interactions with the bone marrow microenvironment. The therapeutic targeting of LSCs is challenging because LSCs are highly similar to normal hematopoietic stem and progenitor cells (HSPCs) and are protected by stromal cells in vivo. We screened 14,718 compounds in a leukemia-stroma co-culture system for inhibition of cobblestone formation, a cellular behavior associated with stem-cell function. Among those compounds that inhibited malignant cells but spared HSPCs was the cholesterol-lowering drug lovastatin. Lovastatin showed anti-LSC activity in vitro and in an in vivo bone marrow transplantation model. Mechanistic studies demonstrated that the effect was on target, via inhibition of HMG-CoA reductase. These results illustrate the power of merging physiologically relevant models with high-throughput screening.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Toward performance-diverse small-molecule libraries for cell-based phenotypic screening using multiplexed high-dimensional profiling

Mathias J. Wawer; Kejie Li; Sigrun M. Gustafsdottir; Vebjorn Ljosa; Nicole E. Bodycombe; Melissa A. Marton; Katherine L. Sokolnicki; Mark-Anthony Bray; Melissa M. Kemp; Ellen Winchester; Bradley K. Taylor; George B. Grant; C. Suk-Yee Hon; Jeremy R. Duvall; J. Anthony Wilson; Joshua Bittker; Vlado Dančík; Rajiv Narayan; Aravind Subramanian; Wendy Winckler; Todd R. Golub; Anne E. Carpenter; Alykhan F. Shamji; Stuart L. Schreiber; Paul A. Clemons

Significance A large compound screening collection is usually constructed to be tested in many distinct assays, each one designed to find modulators of a different biological process. However, it is generally not known to what extent a compound collection actually contains molecules with distinct biological effects (or even any effect) until it has been tested for a couple of years. This study explores a cost-effective way of rapidly assessing the biological performance diversity of a screening collection in a single assay. By simultaneously measuring a large number of cellular features, unbiased profiling assays can distinguish compound effects with high resolution and thus measure performance diversity. We show that this approach could be used as a filtering strategy to build effective screening collections. High-throughput screening has become a mainstay of small-molecule probe and early drug discovery. The question of how to build and evolve efficient screening collections systematically for cell-based and biochemical screening is still unresolved. It is often assumed that chemical structure diversity leads to diverse biological performance of a library. Here, we confirm earlier results showing that this inference is not always valid and suggest instead using biological measurement diversity derived from multiplexed profiling in the construction of libraries with diverse assay performance patterns for cell-based screens. Rather than using results from tens or hundreds of completed assays, which is resource intensive and not easily extensible, we use high-dimensional image-based cell morphology and gene expression profiles. We piloted this approach using over 30,000 compounds. We show that small-molecule profiling can be used to select compound sets with high rates of activity and diverse biological performance.


Bioinformatics | 2016

Gene expression inference with deep learning

Yifei Chen; Yi Li; Rajiv Narayan; Aravind Subramanian; Xiaohui Xie

MOTIVATION Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. RESULTS We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. AVAILABILITY AND IMPLEMENTATION D-GEX is available at https://github.com/uci-cbcl/D-GEX CONTACT: [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


Nature Medicine | 2017

The Drug Repurposing Hub: a next-generation drug library and information resource

Steven M. Corsello; Joshua Bittker; Zihan Liu; Joshua Gould; Patrick McCarren; Jodi E. Hirschman; Stephen Johnston; Anita Vrcic; Bang Wong; Mariya Khan; Jacob K. Asiedu; Rajiv Narayan; Christopher Mader; Aravind Subramanian; Todd R. Golub

To the Editor: Drug repurposing, the application of an existing therapeutic to a new disease indication, holds promise of rapid clinical impact at a lower cost than de novo drug development. So far, there has not been a systematic effort to identify such opportunities, limited in part by the lack of a comprehensive library of clinical compounds suitable for testing. To address this challenge, we hand-curated a collection of 4,707 compounds, experimentally confirmed their identities, and annotated them with literature-reported targets. The collection includes 3,422 drugs that are marketed around the world or that have been tested in human clinical trials. Compounds were obtained from more than 50 chemical vendors, and the purity of each sample was established. We have thus established a blueprint for others to easily assemble such a repurposing library, and we have created an online Drug Repurposing Hub (http:// www.broadinstitute.org/repurposing) that contains detailed annotation for each of the compounds. Repurposing is attractive and pragmatic, given the substantial cost and time requirements—on average, a decade or more—for drug development1. In addition, a large number of potential drugs never reach clinical testing. Moreover, fewer than 15% of compounds that enter clinical development ultimately receive approval, despite the majority of them being deemed safe2. For either approved or failed drugs for which safety has already been established, finding new indications can rapidly bring benefits to patients. Prior drug-repurposing successes span disease areas; examples include the cyclooxygenase inhibitor aspirin to treat coronary-artery disease, the phosphodiesterase inhibitor sildenafil to treat erectile dysfunction, and the antibiotic erythromycin for impaired gastric motility (Supplementary Table 1)3. Even drugs associated with troubling side effects merit reconsideration, as evidenced by the successful repurposing of the antiemetic thalidomide to treat multiple myeloma4. Risk-mediating measures for avoiding the potential teratogenicity of thalidomide and its derivatives are reasonable in patients with life-threatening cancer, whereas the use of these drugs to treat nausea remains unacceptable. Although the benefits of repurposing are clear, successes thus far have been mostly serendipitous. Systematic, large-scale repurposing efforts have not been possible owing to the lack of a definitive physical drug collection, the low quality of drug annotations, and insufficient readouts of drug activity from which new indications can be predicted. Recent technological advances have enabled a step change in our ability to assess drug activities comprehensively. For example, perturbational gene expression profiles can now be obtained at high throughput across multiple cell types5. Gene expression profiling has enabled recent repurposing discoveries, including sirolimus for glucocorticoid-resistant acute lymphocytic leukemia, topiramate for inflammatory-bowel disease, and imipramine for small-cell lung cancer. For cancer therapeutics, a recently developed assay known as PRISM, which uses barcoded cell lines, enables rapid testing of many drugs against a large number of cancer cell lines in pools6. Molecular features of the cell lines (for example, gene expression, mutation, or copy-number variation) can then be used to identify predictive biomarkers of drug sensitivity (Supplementary Table 2). Finally, morphologic changes in cells can be assessed using high-throughput microscopy and machine-learning approaches. Such imaging-based screening unexpectedly identified the cholesterol drug lovastatin as a potent inhibitor of leukemia stem cells. To take advantage of these advances in experimental methods, we sought to assemble a comprehensive library of drugs that have reached the clinic. Surprisingly, we found that no such chemical library of approved and clinical trial drugs is available for purchase. In particular, drugs that have been tested in clinical trials but did not reach approval are not readily accessible. Even obtaining a complete list of such drugs and their annotations is challenging. A prior effort led by the US National Institutes of Health (NIH) focused on drugs approved by the US Food and Drug Administration (FDA), but the library has few compounds that have yet to achieve FDA approval7. Some chemical vendors offer a subset of approved drugs, but most of these commercial libraries overlap in their content and include only a small fraction of the approximately 10,000 drugs that have reached the clinic in the United States and Europe. Given that no complete collection exists, we launched a three-step effort to create the Repurposing Library by (i) identifying and purchasing compounds; (ii) comprehensively annotating their known activities and clinical indications; and (iii) experimentally confirming drug identity and purity. We employed two approaches to identify clinical-drug structures for the Repurposing Library. First, we searched existing databases, both publicly accessible and proprietary, for clinically tested drugs and then manually integrated them to ensure sufficient drug coverage and chemical-structure reliability (Supplementary Table 3). Sources included DrugBank, the NCATS NCGC Pharmaceutical Collection (NPC), Thomson Reuters Integrity, Thomson Reuters Cortellis, and Citeline Pharmaprojects7–9. Second, we located marketed or approved ingredient lists from regulatory agencies worldwide, including the FDA. After structure standardization and the removal of duplicates, approximately 10,000 small-molecule drugs with disclosed structures were found to have reached clinical development. Most of these drugs are not widely available in commercial screening libraries. Through structure-matching (as opposed to relying on compound names), chemical suppliers were identified for 5,691 compounds (Fig. 1). Controlled substances, nonpharmaceutical substances, and redundant elemental formulations were not pursued further. To assemble the collection, we ultimately purchased 8,584 samples (representing 5,691 unique compounds) from 75 chemical vendors, at an average cost of


Cancer Cell | 2016

High-throughput Phenotyping of Lung Cancer Somatic Mutations

Alice H. Berger; Angela N. Brooks; Xiaoyun Wu; Yashaswi Shrestha; Candace R. Chouinard; Federica Piccioni; Mukta Bagul; Atanas Kamburov; Marcin Imielinski; Larson Hogstrom; Cong Zhu; Xiaoping Yang; Sasha Pantel; Ryo Sakai; Jacqueline Watson; Nathan Kaplan; Joshua D. Campbell; Shantanu Singh; David E. Root; Rajiv Narayan; Ted Natoli; David L. Lahr; Itay Tirosh; Pablo Tamayo; Gad Getz; Bang Wong; John G. Doench; Aravind Subramanian; Todd R. Golub; Matthew Meyerson

29 per sample. We performed chemical-structure analysis on all clinical-drug structures (whether commercially available or not) to assess the extent of The Drug Repurposing Hub: a next-generation drug library and information resource


PLOS Biology | 2017

Evaluation of RNAi and CRISPR technologies by large-scale gene expression profiling in the Connectivity Map

Ian Smith; Peyton Greenside; Ted Natoli; David L. Lahr; David Wadden; Itay Tirosh; Rajiv Narayan; David E. Root; Todd R. Golub; Aravind Subramanian; John G. Doench

Recent genome sequencing efforts have identified millions of somatic mutations in cancer. However, the functional impact of most variants is poorly understood. Here we characterize 194 somatic mutations identified in primary lung adenocarcinomas. We present an expression-based variant-impact phenotyping (eVIP) method that uses gene expression changes to distinguish impactful from neutral somatic mutations. eVIP identified 69% of mutations analyzed as impactful and 31% as functionally neutral. A subset of the impactful mutations induces xenograft tumor formation in mice and/or confers resistance to cellular EGFR inhibition. Among these impactful variants are rare somatic, clinically actionable variants including EGFR S645C, ARAF S214C and S214F, ERBB2 S418T, and multiple BRAF variants, demonstrating that rare mutations can be functionally important in cancer.


bioRxiv | 2018

Open Community Challenge Reveals Molecular Network Modules with Key Roles in Diseases

Sarvenaz Choobdar; Mehmet Eren Ahsen; Jake Crawford; Mattia Tomasoni; David Lamparter; Junyuan Lin; Benjamin Hescott; Xiaozhe Hu; Johnathan Mercer; Ted Natoli; Rajiv Narayan; Aravind Subramanian; Gustavo Stolovitzky; Zoltán Kutalik; Kasper Lage; Donna K. Slonim; Julio Saez-Rodriguez; Lenore J. Cowen; Sven Bergmann; Daniel Marbach

The application of RNA interference (RNAi) to mammalian cells has provided the means to perform phenotypic screens to determine the functions of genes. Although RNAi has revolutionized loss-of-function genetic experiments, it has been difficult to systematically assess the prevalence and consequences of off-target effects. The Connectivity Map (CMAP) represents an unprecedented resource to study the gene expression consequences of expressing short hairpin RNAs (shRNAs). Analysis of signatures for over 13,000 shRNAs applied in 9 cell lines revealed that microRNA (miRNA)-like off-target effects of RNAi are far stronger and more pervasive than generally appreciated. We show that mitigating off-target effects is feasible in these datasets via computational methodologies to produce a consensus gene signature (CGS). In addition, we compared RNAi technology to clustered regularly interspaced short palindromic repeat (CRISPR)-based knockout by analysis of 373 single guide RNAs (sgRNAs) in 6 cells lines and show that the on-target efficacies are comparable, but CRISPR technology is far less susceptible to systematic off-target effects. These results will help guide the proper use and analysis of loss-of-function reagents for the determination of gene function.


Nature Methods | 2018

GeNets: a unified web platform for network-based genomic analyses

Taibo Li; April Kim; Joseph Rosenbluh; Heiko Horn; Liraz Greenfeld; David An; Andrew Zimmer; Arthur Liberzon; Jon Bistline; Ted Natoli; Yang Li; Aviad Tsherniak; Rajiv Narayan; Aravind Subramanian; Ted Liefeld; Bang Wong; Dawn Anne Thompson; Sarah E. Calvo; Steve Carr; Jesse S. Boehm; Jake Jaffe; Jill P. Mesirov; Nir Hacohen; Aviv Regev; Kasper Lage

Identification of modules in molecular networks is at the core of many current analysis methods in biomedical research. However, how well different approaches identify disease-relevant modules in different types of gene and protein networks remains poorly understood. We launched the “Disease Module Identification DREAM Challenge”, an open competition to comprehensively assess module identification methods across diverse protein-protein interaction, signaling, gene co-expression, homology, and cancer-gene networks. Predicted network modules were tested for association with complex traits and diseases using a unique collection of 180 genome-wide association studies (GWAS). Our critical assessment of 75 contributed module identification methods reveals novel top-performing algorithms, which recover complementary trait-associated modules. We find that most of these modules correspond to core disease-relevant pathways, which often comprise therapeutic targets and correctly prioritize candidate disease genes. This community challenge establishes benchmarks, tools and guidelines for molecular network analysis to study human disease biology (https://synapse.org/modulechallenge).

Collaboration


Dive into the Rajiv Narayan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Wadden

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge