Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aravinda M. de Silva is active.

Publication


Featured researches published by Aravinda M. de Silva.


Emerging Infectious Diseases | 2003

Emergence and Global Spread of a Dengue Serotype 3, Subtype III Virus

William B. Messer; Duane J. Gubler; Eva Harris; Kamalanayani Sivananthan; Aravinda M. de Silva

Over the past two decades, dengue virus serotype 3 (DENV-3) has caused unexpected epidemics of dengue hemorrhagic fever (DHF) in Sri Lanka, East Africa, and Latin America. We used a phylogenetic approach to evaluate the roles of virus evolution and transport in the emergence of these outbreaks. Isolates from these geographically distant epidemics are closely related and belong to DENV-3, subtype III, which originated in the Indian subcontinent. The emergence of DHF in Sri Lanka in 1989 correlated with the appearance there of a new DENV-3, subtype III variant. This variant likely spread from the Indian subcontinent into Africa in the 1980s and from Africa into Latin America in the mid-1990s. DENV-3, subtype III isolates from mild and severe disease outbreaks formed genetically distinct groups, which suggests a role for viral genetics in DHF.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells

Daniela Weiskopf; Michael A. Angelo; Elzinandes Leal de Azeredo; John Sidney; Jason Greenbaum; Anira N. Fernando; Anne Broadwater; Ravi Kolla; Aruna Dharshan De Silva; Aravinda M. de Silva; Kimberly Mattia; Benjamin J. Doranz; Howard M. Grey; Sujan Shresta; Bjoern Peters; Alessandro Sette

Significance Dengue virus is the etiologic agent of dengue fever, the most significant mosquito-borne viral disease in humans, affecting over 100 million individuals each year. Currently there is no licensed vaccine or effective antiviral therapy available, and treatment is largely supportive in nature. This study presents a comprehensive analysis of functional T-cell memory against dengue viruses and suggests an HLA-linked protective role for CD8+ T cells. This demonstration of the protective role of T-cell responses points the way forward to identifying robust correlates of protection in natural immunity and vaccination against dengue virus. The role of CD8+ T cells in dengue virus infection and subsequent disease manifestations is not fully understood. According to the original antigenic sin theory, skewing of T-cell responses induced by primary infection with one serotype causes less effective response upon secondary infection with a different serotype, predisposing individuals to severe disease. A comprehensive analysis of CD8+ responses in the general population from the Sri Lankan hyperendemic area, involving the measurement of ex vivo IFNγ responses associated with more than 400 epitopes, challenges the original antigenic sin theory. Although skewing of responses toward primary infecting viruses was detected, this was not associated with impairment of responses either qualitatively or quantitatively. Furthermore, we demonstrate higher magnitude and more polyfunctional responses for HLA alleles associated with decreased susceptibility to severe disease, suggesting that a vigorous response by multifunctional CD8+ T cells is associated with protection from dengue virus disease.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions

Ruklanthi de Alwis; Scott A. Smith; Nicholas P. Olivarez; William B. Messer; Jeremy P. Huynh; Wahala M.P.B. Wahala; Laura J. White; Michael S. Diamond; Ralph S. Baric; James E. Crowe; Aravinda M. de Silva

Dengue is a mosquito-borne flavivirus that is spreading at an unprecedented rate and has developed into a major health and economic burden in over 50 countries. Even though infected individuals develop potent and long-lasting serotype-specific neutralizing antibodies (Abs), the epitopes engaged by human neutralizing Abs have not been identified. Here, we demonstrate that the dengue virus (DENV)-specific serum Ab response in humans consists of a large fraction of cross-reactive, poorly neutralizing Abs and a small fraction of serotype-specific, potently inhibitory Abs. Although many mouse-generated, strongly neutralizing monoclonal antibodies (mAbs) recognize epitopes that are present on recombinant DENV envelope (E) proteins, unexpectedly, the majority of neutralizing Abs in human immune sera bound to intact virions but not to the ectodomain of purified soluble E proteins. These conclusions with polyclonal Abs were confirmed with newly generated human mAbs derived from DENV-immune individuals. Two of three strongly neutralizing human mAbs bound to E protein epitopes that were preserved on the virion but not on recombinant E (rE) protein. We propose that humans produce Abs that neutralize DENV infection by binding a complex, quaternary structure epitope that is expressed only when E proteins are assembled on a virus particle. Mapping studies indicate that this epitope has a footprint that spans adjacent E protein dimers and includes residues at the hinge between domains I and II of E protein. These results have significant implications for the DENV Ab and vaccine field.


Journal of Clinical Investigation | 2000

Attachment of Borrelia burgdorferi within Ixodes scapularis mediated by outer surface protein A

Utpal Pal; Aravinda M. de Silva; Ruth R. Montgomery; Durland Fish; Juan Anguita; John F. Anderson; Yves Lobet; Erol Fikrig

Borrelia burgdorferi outer surface protein (Osp) A has been used as a Lyme disease vaccine that blocks transmission: OspA antibodies of immune hosts enter ticks during blood feeding and destroy spirochetes before transmission to the host can occur. B. burgdorferi produce OspA in the gut of unfed Ixodes scapularis ticks, and many spirochetes repress OspA production during the feeding process. This preferential expression suggests that OspA may have an important function in the vector. Here we show that OspA mediates spirochete attachment to the tick gut by binding to an I. scapularis protein. The binding domains reside in the central region and COOH-terminus of OspA. OspA also binds to itself, suggesting that spirochete-spirochete interactions may further facilitate adherence in the gut. OspA-mediated attachment in the tick provides a possible mechanism for how stage-specific protein expression can contribute to pathogenesis during the B. burgdorferi natural cycle.


Virology | 2009

Dengue virus neutralization by human immune sera: Role of envelope protein domain III-reactive antibody

Wahala M.P.B. Wahala; Annette A. Kraus; Laura Beth Haymore; Mary Ann Accavitti-Loper; Aravinda M. de Silva

Dengue viruses (DENV) are the etiological agents of dengue fever (DF) and dengue hemorrhagic fever (DHF). The DENV complex consists of four closely related viruses designated DENV serotypes 1 through 4. Although infection with one serotype induces cross reactive antibody to all 4 serotypes, the long-term protective antibody response is restricted to the serotype responsible for infection. Cross reactive antibodies appear to enhance infection during a second infection with a different serotype. The goal of the present study was to characterize the binding specificity and functional properties of human DENV immune sera. The study focused on domain III of the viral envelope protein (EDIII), as this region has a well characterized epitope that is recognized by strongly neutralizing serotype-specific mouse monoclonal antibodies (Mabs). Our results demonstrate that EDIII-reactive antibodies are present in primary and secondary DENV immune human sera. Human antibodies bound to a serotype specific epitope on EDIII after primary infection and a serotype cross reactive epitope on EDIII after secondary infection. However, EDIII binding antibodies constituted only a small fraction of the total antibody in immune sera binding to DENV. Studies with complete and EDIII antibody depleted human immune sera demonstrated that EDIII binding antibodies play a minor role in DENV neutralization. We propose that human antibodies directed to other epitopes on the virus are primarily responsible for DENV neutralization. Our results have implications for understanding protective immunity following natural DENV infection and for evaluating DENV vaccines.


Viruses | 2011

The Human Antibody Response to Dengue Virus Infection

Wahala M.P.B. Wahala; Aravinda M. de Silva

Dengue viruses (DENV) are the causative agents of dengue fever (DF) and dengue hemorrhagic fever (DHF). Here we review the current state of knowledge about the human antibody response to dengue and identify important knowledge gaps. A large body of work has demonstrated that antibodies can neutralize or enhance DENV infection. Investigators have mainly used mouse monoclonal antibodies (MAbs) to study interactions between DENV and antibodies. These studies indicate that antibody neutralization of DENVs is a “multi-hit” phenomenon that requires the binding of multiple antibodies to neutralize a virion. The most potently neutralizing mouse MAbs bind to surface exposed epitopes on domain III of the dengue envelope (E) protein. One challenge facing the dengue field now is to extend these studies with mouse MAbs to better understand the human antibody response. The human antibody response is complex as it involves a polyclonal response to primary and secondary infections with 4 different DENV serotypes. Here we review studies conducted with immune sera and MAbs isolated from people exposed to dengue infections. Most dengue-specific antibodies in human immune sera are weakly neutralizing and bind to multiple DENV serotypes. The human antibodies that potently and type specifically neutralize DENV represent a small fraction of the total DENV-specific antibody response. Moreover, these neutralizing antibodies appear to bind to novel epitopes including complex, quaternary epitopes that are only preserved on the intact virion. These studies establish that human and mouse antibodies recognize distinct epitopes on the dengue virion. The leading theory proposed to explain the increased risk of severe disease in secondary cases is antibody dependent enhancement (ADE), which postulates that weakly neutralizing antibodies from the first infection bind to the second serotype and enhance infection of FcγR bearing myeloid cells such as monocytes and macrophages. Here we review results from human, animal and cell culture studies relevant to the ADE hypothesis. By understanding how human antibodies neutralize or enhance DENV, it will be possible to better evaluate existing vaccines and develop the next generation of novel vaccines.


PLOS Neglected Tropical Diseases | 2011

In-depth analysis of the antibody response of individuals exposed to primary dengue virus infection

Ruklanthi de Alwis; Martina Beltramello; William B. Messer; Soila Sukupolvi-Petty; Wahala M.P.B. Wahala; Annette A. Kraus; Nicholas P. Olivarez; Quang Pham; James Brian; Wen Yang Tsai; Wei-Kung Wang; Scott B. Halstead; Srisakul Kliks; Michael S. Diamond; Ralph S. Baric; Antonio Lanzavecchia; Federica Sallusto; Aravinda M. de Silva

Humans who experience a primary dengue virus (DENV) infection develop antibodies that preferentially neutralize the homologous serotype responsible for infection. Affected individuals also generate cross-reactive antibodies against heterologous DENV serotypes, which are non-neutralizing. Dengue cross-reactive, non-neutralizing antibodies can enhance infection of Fc receptor bearing cells and, potentially, exacerbate disease. The actual binding sites of human antibody on the DENV particle are not well defined. We characterized the specificity and neutralization potency of polyclonal serum antibodies and memory B-cell derived monoclonal antibodies (hMAbs) from 2 individuals exposed to primary DENV infections. Most DENV-specific hMAbs were serotype cross-reactive and weakly neutralizing. Moreover, many hMAbs bound to the viral pre-membrane protein and other sites on the virus that were not preserved when the viral envelope protein was produced as a soluble, recombinant antigen (rE protein). Nonetheless, by modifying the screening procedure to detect rare antibodies that bound to rE, we were able to isolate and map human antibodies that strongly neutralized the homologous serotype of DENV. Our MAbs results indicate that, in these two individuals exposed to primary DENV infections, a small fraction of the total antibody response was responsible for virus neutralization.


Journal of Virology | 2005

Protective and Therapeutic Capacity of Human Single-Chain Fv-Fc Fusion Proteins against West Nile Virus

L. Hannah Gould; Jianhua Sui; Harald G. Foellmer; Theodore Oliphant; Tian Wang; Michel Ledizet; Akikazu Murakami; Kristin M Noonan; Cassandra Lambeth; Kalipada Kar; John F. Anderson; Aravinda M. de Silva; Michael S. Diamond; Raymond A. Koski; Wayne A. Marasco; Erol Fikrig

ABSTRACT West Nile virus has spread rapidly across the United States, and there is currently no approved human vaccine or therapy to prevent or treat disease. Passive immunization with antibodies against the envelope protein represents a promising means to provide short-term prophylaxis and treatment for West Nile virus infection. In this study, we identified a panel of 11 unique human single-chain variable region antibody fragments (scFvs) that bind the envelope protein of West Nile virus. Selected scFvs were converted to Fc fusion proteins (scFv-Fcs) and were tested in mice for their ability to prevent lethal West Nile virus infection. Five of these scFv-Fcs, 11, 15, 71, 85, and 95, protected 100% of mice from death when given prior to infection with virus. Two of them, 11 and 15, protected 80% of mice when given at days 1 and 4 after infection. In addition, four of the scFv-Fcs cross-neutralized dengue virus, serotype 2. Binding assays using yeast surface display demonstrated that all of our scFvs bind to sites within domains I and II of West Nile virus envelope protein. These recombinant human scFvs are potential candidates for immunoprophylaxis and therapy of flavivirus infections.


Journal of Clinical Microbiology | 2007

Comparison of Plaque- and Flow Cytometry-Based Methods for Measuring Dengue Virus Neutralization

Annette A. Kraus; William B. Messer; Laura Beth Haymore; Aravinda M. de Silva

ABSTRACT As dengue vaccines enter clinical trials, there is a need for rapid and quantitative assays to measure neutralization. We have developed flow-based neutralization assays which generated results similar to those generated by the established, plaque reduction neutralization test. The flow assays are an improvement, as they use human cells and allow for high-throughput screening.


Nature Communications | 2015

A highly potent human antibody neutralizes dengue virus serotype 3 by binding across three surface proteins

Guntur Fibriansah; Joanne L. Tan; Scott A. Smith; Ruklanthi de Alwis; Thiam Seng Ng; Victor A. Kostyuchenko; Ramesh Jadi; Petra Kukkaro; Aravinda M. de Silva; James E. Crowe; Shee-Mei Lok

Dengue virus (DENV) infects ~400 million people annually. There is no licensed vaccine or therapeutic drug. Only a small fraction of the total DENV-specific antibodies in a naturally occurring dengue infection consists of highly neutralizing antibodies. Here we show that the DENV-specific human monoclonal antibody 5J7 is exceptionally potent, neutralizing 50% of virus at nanogram-range antibody concentration. The 9 Å resolution cryo-electron microscopy structure of the Fab 5J7–DENV complex shows that a single Fab molecule binds across three envelope proteins and engages three functionally important domains, each from a different envelope protein. These domains are critical for receptor binding and fusion to the endosomal membrane. The ability to bind to multiple domains allows the antibody to fully coat the virus surface with only 60 copies of Fab, that is, half the amount compared with other potent antibodies. Our study reveals a highly efficient and unusual mechanism of molecular recognition by an antibody.

Collaboration


Dive into the Aravinda M. de Silva's collaboration.

Top Co-Authors

Avatar

Ralph S. Baric

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

James E. Crowe

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Eva Harris

University of California

View shared research outputs
Top Co-Authors

Avatar

Scott A. Smith

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruklanthi de Alwis

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Wahala M.P.B. Wahala

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Boyd Yount

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Anne Broadwater

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge